
Car A has an acceleration of $2\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}$ due east and car B $4\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}$ due north. What is the acceleration of car B with respect to car A?
Answer
570.3k+ views
Hint: The given case is in a two dimensional system, therefore the directional vectors should also be considered. The total magnitude of the acceleration depends on the acceleration among different directions.
Complete step by step answer:
When the two cars are moving in the different directions then the relative velocity of the cars is calculated by subtracting the velocities of the car. When the car moves in directly opposite directions then the relative velocity of the car is calculated by the sum of two velocities.
The direction of the cars is as shown:
The formula to calculate the relative acceleration of car B with respect to car A is
${a_{BA}} = {a_B}\hat j - {a_A}\hat i$
Here, ${a_{BA}}$ is the relative acceleration of car A with respect to car B, ${a_A}$ is the acceleration of car A, $\hat i$ is the unit vector along east direction, ${a_B}$is the acceleration of car B and $\hat j$ is the unit vector along north direction.
Substitute $2\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.
} {{{\rm{s}}^{\rm{2}}}}}$ for ${a_A}$ and $4\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}$for ${a_B}$ in the formula to calculate the relative acceleration of the car B with respect to car A.
${a_{BA}} = \left( {2\,{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}} \right)\hat j - \left( {4\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}} \right)\hat i$
The formula to calculate the magnitude of relative acceleration of car B with respect to car A is
$\left| {{a_{BA}}} \right| = \sqrt {a_B^2 + a_A^2} \,\,$
Substitute $2\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right. } {{{\rm{s}}^{\rm{2}}}}}$ for ${a_A}$ and $4\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}$for ${a_B}$ in the formula to calculate magnitude of the relative acceleration of the car B with respect to car A.
$ \left| {{a_{BA}}} \right| = \sqrt {{{\left( {2\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right. } {{{\rm{s}}^{\rm{2}}}}}} \right)}^2} + {{\left( {4\,{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}} \right)}^2}} \\
= \sqrt {4 + 16} \,{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right. } {{{\rm{s}}^{\rm{2}}}}}\\
= \sqrt {20} \,{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}\\
= 4.47\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}} $
Thus, the relative acceleration of car B with respect to car A is $4.47\,{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}$.
Note:
The direction of car B relative to car A can also be found from this example because the direction of the car can be calculated using the acceleration of the cars in different directions.
Complete step by step answer:
When the two cars are moving in the different directions then the relative velocity of the cars is calculated by subtracting the velocities of the car. When the car moves in directly opposite directions then the relative velocity of the car is calculated by the sum of two velocities.
The direction of the cars is as shown:
The formula to calculate the relative acceleration of car B with respect to car A is
${a_{BA}} = {a_B}\hat j - {a_A}\hat i$
Here, ${a_{BA}}$ is the relative acceleration of car A with respect to car B, ${a_A}$ is the acceleration of car A, $\hat i$ is the unit vector along east direction, ${a_B}$is the acceleration of car B and $\hat j$ is the unit vector along north direction.
Substitute $2\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.
} {{{\rm{s}}^{\rm{2}}}}}$ for ${a_A}$ and $4\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}$for ${a_B}$ in the formula to calculate the relative acceleration of the car B with respect to car A.
${a_{BA}} = \left( {2\,{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}} \right)\hat j - \left( {4\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}} \right)\hat i$
The formula to calculate the magnitude of relative acceleration of car B with respect to car A is
$\left| {{a_{BA}}} \right| = \sqrt {a_B^2 + a_A^2} \,\,$
Substitute $2\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right. } {{{\rm{s}}^{\rm{2}}}}}$ for ${a_A}$ and $4\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}$for ${a_B}$ in the formula to calculate magnitude of the relative acceleration of the car B with respect to car A.
$ \left| {{a_{BA}}} \right| = \sqrt {{{\left( {2\,{{\rm{m}} {\left/{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right. } {{{\rm{s}}^{\rm{2}}}}}} \right)}^2} + {{\left( {4\,{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}} \right)}^2}} \\
= \sqrt {4 + 16} \,{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right. } {{{\rm{s}}^{\rm{2}}}}}\\
= \sqrt {20} \,{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}\\
= 4.47\,{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}} $
Thus, the relative acceleration of car B with respect to car A is $4.47\,{{\rm{m}} {\left/ {\vphantom {{\rm{m}} {{{\rm{s}}^{\rm{2}}}}}} \right.} {{{\rm{s}}^{\rm{2}}}}}$.
Note:
The direction of car B relative to car A can also be found from this example because the direction of the car can be calculated using the acceleration of the cars in different directions.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

