Answer
Verified
454.8k+ views
Hint: An electrochemical system consists of a vessel containing an electrolyte into which two electrodes are dipped. In an electrolytic cell, a flow of current produces a chemical reaction. This process involves transfer of electrons which changes the oxidation state of the molecule or ions. Electrochemical cells are of two types-electrolytic and voltaic cells.
Nernst equation is the principle behind this problem.
Formula used:
Complete answer: or Complete step by step answer:
The electrodes in the electrochemical cells get oxidized or reduced. Electrochemical cells consists of two half cells. Each half cell has an electrode and an electrolyte. Species from one half (anode) lose electrons (oxidation) and species from other half (cathode) gain electrons (reduction).
In the cell diagram, first part denotes the anodic part while the last part is the cathodic part.
In the cell diagram given, ${\text{Zn}}\left( {\text{s}} \right)\left| {{\text{Z}}{{\text{n}}^{2 + }}} \right.\left( {{\text{aq}}} \right)\left\| {{\text{S}}{{\text{n}}^{2 + }}} \right.\left( {{\text{aq}}} \right)\left| {{\text{Sn}}} \right.\left( {\text{s}} \right)$, zinc get oxidized to ${\text{Z}}{{\text{n}}^{2 + }}$ and ${\text{S}}{{\text{n}}^{2 + }}$ get reduced to ${\text{Sn}}$.
It is given that the concentration of ${\text{Z}}{{\text{n}}^{2 + }}$, $\left[ {{\text{Z}}{{\text{n}}^{2 + }}} \right] = 0.04{\text{M}}$ and that of ${\text{S}}{{\text{n}}^{2 + }}$, $\left[ {{\text{S}}{{\text{n}}^{2 + }}} \right] = 0.03{\text{M}}$
Cell potential at anode, \[{{\text{E}}^ \circ }_{{\text{Zn}}\left| {{\text{Z}}{{\text{n}}^{2 + }}} \right.} = - 0.76{\text{V}}\] and cell potential at cathode, \[{{\text{E}}^ \circ }_{{\text{Sn}}\left| {{\text{S}}{{\text{n}}^{2 + }}} \right.} = - 0.14{\text{V}}\]
Standard potential, ${{\text{E}}^ \circ } = {{\text{E}}^ \circ }_{{\text{cathode}}} - {{\text{E}}^ \circ }_{{\text{anode}}} \Leftrightarrow {{\text{E}}^ \circ } = {{\text{E}}^ \circ }_{{\text{S}}{{\text{n}}^{2 + }}\left| {{\text{Sn}}} \right.} - {{\text{E}}^ \circ }_{{\text{Zn}}\left| {{\text{Z}}{{\text{n}}^{2 + }}} \right.}$
Substituting the values, we get
\[{{\text{E}}^ \circ } = - 0.14{\text{V}} - \left( { - 0.76{\text{V}}} \right) = + 0.62{\text{V}}\]
Now we can use the Nernst equation for finding the cell potential.
\[{\text{E}} = {{\text{E}}^ \circ } - \dfrac{{0.0592}}{{\text{F}}}\log \dfrac{{\left[ {{\text{Z}}{{\text{n}}^{2 + }}} \right]}}{{\left[ {{\text{S}}{{\text{n}}^{2 + }}} \right]}}\]
Substituting the values, we get
\[{\text{E}} = 0.62{\text{V}} - \dfrac{{0.0592}}{2}\log \dfrac{{\left[ {0.04} \right]}}{{\left[ {0.03} \right]}}\]
On simplification, we get
\[{\text{E}} = 0.62{\text{V}} - 0.0296\log 1.2\]
\[{\text{E}} = 0.62{\text{V}} - \left( {3.7 \times {{10}^{ - 3}}} \right)\]
Solving,
\[{\text{E}} = 0.62{\text{V}} - \left( {3.7 \times {{10}^{ - 3}}} \right) = 0.616{\text{V}}\]
Note:
Gibbs’ free energy for a cell can also be calculated using Nernst equation. The Nernst equation allows us to calculate potential when the two cells are not in $1{\text{M}}$ concentration. At equilibrium, forward and reverse reactions occur at equal rates. Thus the cell potential is zero volts. Equilibrium constant can be calculated from the cell potential.
Nernst equation is the principle behind this problem.
Formula used:
Complete answer: or Complete step by step answer:
The electrodes in the electrochemical cells get oxidized or reduced. Electrochemical cells consists of two half cells. Each half cell has an electrode and an electrolyte. Species from one half (anode) lose electrons (oxidation) and species from other half (cathode) gain electrons (reduction).
In the cell diagram, first part denotes the anodic part while the last part is the cathodic part.
In the cell diagram given, ${\text{Zn}}\left( {\text{s}} \right)\left| {{\text{Z}}{{\text{n}}^{2 + }}} \right.\left( {{\text{aq}}} \right)\left\| {{\text{S}}{{\text{n}}^{2 + }}} \right.\left( {{\text{aq}}} \right)\left| {{\text{Sn}}} \right.\left( {\text{s}} \right)$, zinc get oxidized to ${\text{Z}}{{\text{n}}^{2 + }}$ and ${\text{S}}{{\text{n}}^{2 + }}$ get reduced to ${\text{Sn}}$.
It is given that the concentration of ${\text{Z}}{{\text{n}}^{2 + }}$, $\left[ {{\text{Z}}{{\text{n}}^{2 + }}} \right] = 0.04{\text{M}}$ and that of ${\text{S}}{{\text{n}}^{2 + }}$, $\left[ {{\text{S}}{{\text{n}}^{2 + }}} \right] = 0.03{\text{M}}$
Cell potential at anode, \[{{\text{E}}^ \circ }_{{\text{Zn}}\left| {{\text{Z}}{{\text{n}}^{2 + }}} \right.} = - 0.76{\text{V}}\] and cell potential at cathode, \[{{\text{E}}^ \circ }_{{\text{Sn}}\left| {{\text{S}}{{\text{n}}^{2 + }}} \right.} = - 0.14{\text{V}}\]
Standard potential, ${{\text{E}}^ \circ } = {{\text{E}}^ \circ }_{{\text{cathode}}} - {{\text{E}}^ \circ }_{{\text{anode}}} \Leftrightarrow {{\text{E}}^ \circ } = {{\text{E}}^ \circ }_{{\text{S}}{{\text{n}}^{2 + }}\left| {{\text{Sn}}} \right.} - {{\text{E}}^ \circ }_{{\text{Zn}}\left| {{\text{Z}}{{\text{n}}^{2 + }}} \right.}$
Substituting the values, we get
\[{{\text{E}}^ \circ } = - 0.14{\text{V}} - \left( { - 0.76{\text{V}}} \right) = + 0.62{\text{V}}\]
Now we can use the Nernst equation for finding the cell potential.
\[{\text{E}} = {{\text{E}}^ \circ } - \dfrac{{0.0592}}{{\text{F}}}\log \dfrac{{\left[ {{\text{Z}}{{\text{n}}^{2 + }}} \right]}}{{\left[ {{\text{S}}{{\text{n}}^{2 + }}} \right]}}\]
Substituting the values, we get
\[{\text{E}} = 0.62{\text{V}} - \dfrac{{0.0592}}{2}\log \dfrac{{\left[ {0.04} \right]}}{{\left[ {0.03} \right]}}\]
On simplification, we get
\[{\text{E}} = 0.62{\text{V}} - 0.0296\log 1.2\]
\[{\text{E}} = 0.62{\text{V}} - \left( {3.7 \times {{10}^{ - 3}}} \right)\]
Solving,
\[{\text{E}} = 0.62{\text{V}} - \left( {3.7 \times {{10}^{ - 3}}} \right) = 0.616{\text{V}}\]
Note:
Gibbs’ free energy for a cell can also be calculated using Nernst equation. The Nernst equation allows us to calculate potential when the two cells are not in $1{\text{M}}$ concentration. At equilibrium, forward and reverse reactions occur at equal rates. Thus the cell potential is zero volts. Equilibrium constant can be calculated from the cell potential.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE