
Calculate the weight of ${{V}_{2}}{{O}_{5}}$ produced from 2 g of $VO$ and 5.75g of $F{{e}_{2}}{{O}_{3}}$.
\[VO+F{{e}_{2}}{{O}_{3}}\to FeO+{{V}_{2}}{{O}_{5}}\]
Answer
463.8k+ views
Hint: It is limiting reagent based numerical and in this first we have to find out the limiting reagent from the given reaction and the data according to stoichiometric calculations and then from this limiting reagent we can find the amount of product formed which is dependent on the limiting reagent. Now solve it.
Complete Solution :
This numerical is based on the concept of the limiting reagent. Many times, the reactions are carried out when the reactants are not present in the amounts as required by the balanced chemical reaction.
In such situations, one reactant is in excess over the other and the other reactant which is present in a lesser amount gets consumed and after that no reaction occurs and thus, it limits the amount of product formed and is, therefore, known as the limiting reagent.
- Now considering the statement :
The reaction is given as:
\[VO+F{{e}_{2}}{{O}_{3}}\to FeO+{{V}_{2}}{{O}_{5}}\]
- After balancing we get, the reaction as:
\[2VO+3F{{e}_{2}}{{O}_{3}}\to 6FeO+{{V}_{2}}{{O}_{5}}\] ---------------(1)
- Now, first of all we will find the limiting reagent on whose product form depends.
So, the molecular mass of $VO = 51 + 16 = 67g\text{ }mol{{e}^{-1}}$
Since, the balanced reaction involves two moles of $VO$, then
Molecular mass of 2 moles of $VO = 67\times 2 = 134 g$
Similarly, the molecular mass of $F{{e}_{2}}{{O}_{3}} = 56\times 2+16\times 3 = 112 + 48 = 160g\text{ }mol{{e}^{-1}}$
Since, the balanced reaction involves three moles of $F{{e}_{2}}{{O}_{3}}$, then
Molecular mass of 3 moles of $F{{e}_{2}}{{O}_{3}} = 160\times 3 = 480g$
Molecular mass of ${{V}_{2}}{{O}_{5}}=51\times 2 + 16\times 5 = 102 + 80 = 182g\text{ }mol{{e}^{-1}}$
Now from equation (1) , According to the stoichiometric calculations; we will find the limiting reagent as:
$\begin{align}
& 134g\text{ }of\text{ }VO\text{ }requires = 480g\text{ }of\text{ }F{{e}_{2}}{{O}_{3}} \\
& \,1g\text{ }of\text{ }VO\text{ }requires=\dfrac{480}{134}g\text{ }of\text{ }F{{e}_{2}}{{O}_{3}} \\
& \text{ 2}g\text{ }of\text{ }VO\text{ }requires = \dfrac{480}{134}\times 2g\text{ }of\text{ }F{{e}_{2}}{{O}_{3}}\text{ } \\
& \text{ =7}\text{.16 }g\text{ }of\text{ }F{{e}_{2}}{{O}_{3}}\text{ } \\
\end{align}$
But we have been given 5.75 g of $F{{e}_{2}}{{O}_{3}}$ in the statement.
- So, it means that $F{{e}_{2}}{{O}_{3}}$ is the limiting factor and the amount of product depends upon it.
From equation (1), according to stoichiometric calculations; the amount of product formed is;
$\begin{align}
& \text{480g }of\text{ }F{{e}_{2}}{{O}_{3}}\text{ }requires = 182g\text{ }of\text{ }{{V}_{2}}{{O}_{5}} \\
& \,1g\text{ }of\text{ }F{{e}_{2}}{{O}_{3}}\text{ }requires\text{ }=\dfrac{182}{480}g\text{ }of\text{ }{{V}_{2}}{{O}_{5}} \\
& \text{5}\text{.75}g\text{ }of\text{ }F{{e}_{2}}{{O}_{3}}requires=\dfrac{182}{480}\times 5.75g\text{ }of\text{ }{{V}_{2}}{{O}_{5}}\text{ } \\
& \text{ =2}\text{.18 }g\text{ }of\text{ }{{V}_{2}}{{O}_{5}}\text{ } \\
\end{align}$
Therefore, the weight of ${{V}_{2}}{{O}_{5}}$ produced from 2 g of $VO$ and 5.75g of $F{{e}_{2}}{{O}_{3}}$ is 2.18 g.
Note: Always keep in mind that the reactions which involve the limiting factor i.e. the reagent which is fully consumed then in those reactions the weight of the product that is formed depends upon that limiting factor and not on the other reactant which is present in excess.
Complete Solution :
This numerical is based on the concept of the limiting reagent. Many times, the reactions are carried out when the reactants are not present in the amounts as required by the balanced chemical reaction.
In such situations, one reactant is in excess over the other and the other reactant which is present in a lesser amount gets consumed and after that no reaction occurs and thus, it limits the amount of product formed and is, therefore, known as the limiting reagent.
- Now considering the statement :
The reaction is given as:
\[VO+F{{e}_{2}}{{O}_{3}}\to FeO+{{V}_{2}}{{O}_{5}}\]
- After balancing we get, the reaction as:
\[2VO+3F{{e}_{2}}{{O}_{3}}\to 6FeO+{{V}_{2}}{{O}_{5}}\] ---------------(1)
- Now, first of all we will find the limiting reagent on whose product form depends.
So, the molecular mass of $VO = 51 + 16 = 67g\text{ }mol{{e}^{-1}}$
Since, the balanced reaction involves two moles of $VO$, then
Molecular mass of 2 moles of $VO = 67\times 2 = 134 g$
Similarly, the molecular mass of $F{{e}_{2}}{{O}_{3}} = 56\times 2+16\times 3 = 112 + 48 = 160g\text{ }mol{{e}^{-1}}$
Since, the balanced reaction involves three moles of $F{{e}_{2}}{{O}_{3}}$, then
Molecular mass of 3 moles of $F{{e}_{2}}{{O}_{3}} = 160\times 3 = 480g$
Molecular mass of ${{V}_{2}}{{O}_{5}}=51\times 2 + 16\times 5 = 102 + 80 = 182g\text{ }mol{{e}^{-1}}$
Now from equation (1) , According to the stoichiometric calculations; we will find the limiting reagent as:
$\begin{align}
& 134g\text{ }of\text{ }VO\text{ }requires = 480g\text{ }of\text{ }F{{e}_{2}}{{O}_{3}} \\
& \,1g\text{ }of\text{ }VO\text{ }requires=\dfrac{480}{134}g\text{ }of\text{ }F{{e}_{2}}{{O}_{3}} \\
& \text{ 2}g\text{ }of\text{ }VO\text{ }requires = \dfrac{480}{134}\times 2g\text{ }of\text{ }F{{e}_{2}}{{O}_{3}}\text{ } \\
& \text{ =7}\text{.16 }g\text{ }of\text{ }F{{e}_{2}}{{O}_{3}}\text{ } \\
\end{align}$
But we have been given 5.75 g of $F{{e}_{2}}{{O}_{3}}$ in the statement.
- So, it means that $F{{e}_{2}}{{O}_{3}}$ is the limiting factor and the amount of product depends upon it.
From equation (1), according to stoichiometric calculations; the amount of product formed is;
$\begin{align}
& \text{480g }of\text{ }F{{e}_{2}}{{O}_{3}}\text{ }requires = 182g\text{ }of\text{ }{{V}_{2}}{{O}_{5}} \\
& \,1g\text{ }of\text{ }F{{e}_{2}}{{O}_{3}}\text{ }requires\text{ }=\dfrac{182}{480}g\text{ }of\text{ }{{V}_{2}}{{O}_{5}} \\
& \text{5}\text{.75}g\text{ }of\text{ }F{{e}_{2}}{{O}_{3}}requires=\dfrac{182}{480}\times 5.75g\text{ }of\text{ }{{V}_{2}}{{O}_{5}}\text{ } \\
& \text{ =2}\text{.18 }g\text{ }of\text{ }{{V}_{2}}{{O}_{5}}\text{ } \\
\end{align}$
Therefore, the weight of ${{V}_{2}}{{O}_{5}}$ produced from 2 g of $VO$ and 5.75g of $F{{e}_{2}}{{O}_{3}}$ is 2.18 g.
Note: Always keep in mind that the reactions which involve the limiting factor i.e. the reagent which is fully consumed then in those reactions the weight of the product that is formed depends upon that limiting factor and not on the other reactant which is present in excess.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Find the image of the point 38 about the line x+3y class 11 maths CBSE

Can anyone list 10 advantages and disadvantages of friction

Distinguish between Mitosis and Meiosis class 11 biology CBSE
