
Calculate the tension T in the rope at distances x from end A in the following diagram, assuming that F1>F2.

Answer
495.6k+ views
Hint: In this question, we need to determine the tension in the rope at a point which is ‘x’ distance from the end A. For this, we will draw the free body diagram of the rope and by using Newton's second law of motion.
Complete step by step answer:
Given that the force F1>F2.
We know by the newton’s second law of motion
\[F = ma - - (i)\]
Here as two forces are acting where F1>F2, so we can write equation (i) as
\[{F_1} - {F_2} = ma\]
This can be written as
\[a = \dfrac{{{F_1} - {F_2}}}{m} - - (ii)\]
Now, since we have to find the tension T in rope from end A so we will draw the free body diagram for the side A at distance x
We know that whenever a tensile force is acting on any object, a tension is experienced in the direction opposite to the force
From the above free body diagram, we can write
\[{F_1} - T = ma - - (iii)\]
Here mass m is the linear mass density, which is equal to
\[m = \dfrac{{Mx}}{L}\]
Now by substituting linear mass density in equation (iii), we get
\[{F_1} - T = \dfrac{{Mx}}{L} \times a\]
Now substitute the value of acceleration from equation (ii), we further get
\[
{F_1} - T = \dfrac{{mx}}{L} \times \dfrac{{{F_1} - {F_2}}}{m} \\
{F_1} - T = \dfrac{x}{L} \times \left( {{F_1} - {F_2}} \right) \\
{F_1} - \dfrac{x}{L} \times \left( {{F_1} - {F_2}} \right) = T \\
{F_1} - \dfrac{{{F_1}x}}{L} + \dfrac{{{F_2}x}}{L} = T \\
{F_1} + \dfrac{x}{L} \times \left( {{F_2} - {F_1}} \right) = T \\
\]
Hence the tension T in the rope at distances x from end A
\[T = {F_1} + \dfrac{x}{L} \times \left( {{F_2} - {F_1}} \right)\]
Note: It is worth noting down here that if the tension exerted on the rope is more than the tensile strength of the rope, then the rope will break; otherwise, not. Moreover, as the pull force on the rope at the side A of the rope is more than the side B so, the acceleration will be towards A only.
Complete step by step answer:
Given that the force F1>F2.
We know by the newton’s second law of motion
\[F = ma - - (i)\]
Here as two forces are acting where F1>F2, so we can write equation (i) as
\[{F_1} - {F_2} = ma\]
This can be written as
\[a = \dfrac{{{F_1} - {F_2}}}{m} - - (ii)\]
Now, since we have to find the tension T in rope from end A so we will draw the free body diagram for the side A at distance x

We know that whenever a tensile force is acting on any object, a tension is experienced in the direction opposite to the force
From the above free body diagram, we can write
\[{F_1} - T = ma - - (iii)\]
Here mass m is the linear mass density, which is equal to
\[m = \dfrac{{Mx}}{L}\]
Now by substituting linear mass density in equation (iii), we get
\[{F_1} - T = \dfrac{{Mx}}{L} \times a\]
Now substitute the value of acceleration from equation (ii), we further get
\[
{F_1} - T = \dfrac{{mx}}{L} \times \dfrac{{{F_1} - {F_2}}}{m} \\
{F_1} - T = \dfrac{x}{L} \times \left( {{F_1} - {F_2}} \right) \\
{F_1} - \dfrac{x}{L} \times \left( {{F_1} - {F_2}} \right) = T \\
{F_1} - \dfrac{{{F_1}x}}{L} + \dfrac{{{F_2}x}}{L} = T \\
{F_1} + \dfrac{x}{L} \times \left( {{F_2} - {F_1}} \right) = T \\
\]
Hence the tension T in the rope at distances x from end A
\[T = {F_1} + \dfrac{x}{L} \times \left( {{F_2} - {F_1}} \right)\]
Note: It is worth noting down here that if the tension exerted on the rope is more than the tensile strength of the rope, then the rope will break; otherwise, not. Moreover, as the pull force on the rope at the side A of the rope is more than the side B so, the acceleration will be towards A only.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
