
Calculate the remainder when \[30\] is divided by \[7\]?
Answer
506.1k+ views
Hint: In order to find the remainder when \[30\] is divided by \[7\], we can either perform the process of division or apply the Euclid’s division algorithm and solve it by considering the remainder as a variable and the quotient as a nearer number that \[7\] divides. The value of the variable will be our required answer.
Complete step-by-step solution:
Now let us briefly talk about the Euclid division algorithm. It is also called as Euclid division Lemma which states that \[a,b\] are positive integers, then there exists unique integers satisfying \[q,r\] satisfying \[a=bq+r\] where \[0\le r< b\].
Now let us find the remainder when \[30\] is divided by \[7\].
We know that the Euclid division algorithm is \[a=bq+r\].
Here, we have \[a=30,b=7\].
In order to find \[q\], let us check such a number that divides \[30\] or nearly divides it.
So we can observe such number as \[28=7\times 4\]
We get the value of \[q\] as \[4\].
Upon substituting, we obtain
\[\begin{align}
& \Rightarrow a=bq+r \\
& \Rightarrow 30=7\left( 4 \right)+r \\
& \Rightarrow 30=28+r \\
& \Rightarrow 30-28=r \\
& \Rightarrow r=2 \\
\end{align}\]
\[\therefore \] The remainder when \[30\] is divided by \[7\]is \[2\].
Note: We can also find the remainder by applying the division method as shown below.
\[\dfrac{30}{7}=4\]
Even in this case, we obtain the remainder as \[2\].
Using the Euclid division algorithm we can also find the HCF of the numbers. We must have a point to note that the numbers must be positive in order to apply the Euclid division algorithm in order to obtain a unique quotient and remainder.
Complete step-by-step solution:
Now let us briefly talk about the Euclid division algorithm. It is also called as Euclid division Lemma which states that \[a,b\] are positive integers, then there exists unique integers satisfying \[q,r\] satisfying \[a=bq+r\] where \[0\le r< b\].
Now let us find the remainder when \[30\] is divided by \[7\].
We know that the Euclid division algorithm is \[a=bq+r\].
Here, we have \[a=30,b=7\].
In order to find \[q\], let us check such a number that divides \[30\] or nearly divides it.
So we can observe such number as \[28=7\times 4\]
We get the value of \[q\] as \[4\].
Upon substituting, we obtain
\[\begin{align}
& \Rightarrow a=bq+r \\
& \Rightarrow 30=7\left( 4 \right)+r \\
& \Rightarrow 30=28+r \\
& \Rightarrow 30-28=r \\
& \Rightarrow r=2 \\
\end{align}\]
\[\therefore \] The remainder when \[30\] is divided by \[7\]is \[2\].
Note: We can also find the remainder by applying the division method as shown below.
\[\dfrac{30}{7}=4\]
Even in this case, we obtain the remainder as \[2\].
Using the Euclid division algorithm we can also find the HCF of the numbers. We must have a point to note that the numbers must be positive in order to apply the Euclid division algorithm in order to obtain a unique quotient and remainder.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

