
Calculate the pH of $\text{ 1}{{\text{0}}^{-8}}\text{ M NaOH }$ the solution?
Answer
467.4k+ views
Hint: Every aqueous solution, whether acidic, alkaline, or neutral, contains both $\text{ }{{\text{H}}^{\text{+ }}}$ and $\text{ O}{{\text{H}}^{-}}\text{ }$ ions. Aqueous solution of sodium hydroxide is prepared in the water. Water itself dissociates into the $\text{ }{{\text{H}}^{\text{+ }}}$and $\text{ O}{{\text{H}}^{-}}\text{ }$ ions. Thus from the ionic product of water, the sum of $\text{ pOH }$ and $\text{ pH }$ is given as,
\[\text{ p}{{\text{K}}_{\text{w}}}\text{=14 = pH + pOH }\]
Since at room temperature pure water the concentrations of hydrogen ion and hydroxide ion is easy to $\text{ 1}{{\text{0}}^{-7}}\text{ }$.
Complete step by step answer:
Every aqueous solution, whether acidic, alkaline, or neutral, contains both $\text{ }{{\text{H}}^{\text{+ }}}$ and $\text{ O}{{\text{H}}^{-}}\text{ }$ ions. The product of the concentrations is always constant and equal to the $\text{ 1}\times \text{1}{{\text{0}}^{-14}}\text{ }$ at room temperature.
The $\text{ pH }$ is used to the hydrogen ion concentration like that hydroxyl ion concentration in the solution can be expressed as the $\text{ pOH }$ . The hydroxyl ion concentration is expressed as,
$\text{ pOH = }-\text{log}\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
We have to determine the $\text{ pH }$ values of the $\text{ 1}{{\text{0}}^{-8}}\text{ M NaOH }$ . Sodium hydroxide dissociates as follows,
$\text{ NaOH }\to \text{ N}{{\text{a}}^{\text{+ }}}+\text{ O}{{\text{H}}^{-}}\text{ }$
The neutral water also contributes towards the hydroxide concentration. The water dissociates into hydrogen and hydroxyl ions. The equation is represented as follows,
$\text{ }{{\text{H}}_{\text{2}}}\text{O(}l)\text{ }\rightleftharpoons {{\text{H}}^{\text{+}}}\text{(}aq)+\text{O}{{\text{H}}^{-}}(aq)\text{ }$
Dissociation takes place to a very small extent .for pure and neutral water the concentration of hydrogen ion and the hydroxide ion formed is equal to the $\text{ 1}{{\text{0}}^{-7}}\text{ }$ .
$\text{ p}{{\text{K}}_{\text{w}}}\text{ = pH + pOH }$
The water provides $\text{ 1}{{\text{0}}^{-7}}\text{ M }$ hydroxide ion. Thus total hydroxide ion concentration in the solution is equal to hydroxide concentration from the water and hydroxide concentration from the sodium hydroxide solution. Thus total hydroxide in the solution is equal to,
$\text{ 1}{{\text{0}}^{-\text{7}}}\text{(from water) + 1}{{\text{0}}^{-\text{8}}}\text{(from NaOH) = 1}\text{.1}\times \text{1}{{\text{0}}^{-\text{7}}}\text{ M }$
Thus the $\text{ pH }$value of $\text{ NaOH }$the solution is,
$\begin{align}
& \text{ pH =14}-\text{ }\left( -\log \left[ \text{O}{{\text{H}}^{-}} \right] \right) \\
& \Rightarrow 14-\left( -\log (1.1\times {{10}^{-7}}) \right) \\
& \therefore \text{pH = 14}-\text{6}\text{.96 = 7}\text{.04 } \\
\end{align}$
Therefore, the $\text{ pH }$ value of the $\text{ 1}{{\text{0}}^{-8}}\text{ M NaOH }$ solution is $\text{ 7}\text{.04 }$.
Note: we know that the ionic product of the water is written as the product of hydrogen ion concentration and hydroxide ion concentration.$\text{ }{{\text{K}}_{\text{w}}}\text{ = }\left[ {{\text{H}}^{+}} \right]\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$ On taking the log and reversing we have, \[\text{ p}{{\text{K}}_{\text{w}}}\text{ = pH + pOH }\].Thus without thinking we will use this formula and calculate the $\text{ pH }$ as 6 .however, this is a complete baseless as the solution becomes acidic on the addition of base. Thus it must be remembered that the water supplies the hydroxide ions to the solution too.
\[\text{ p}{{\text{K}}_{\text{w}}}\text{=14 = pH + pOH }\]
Since at room temperature pure water the concentrations of hydrogen ion and hydroxide ion is easy to $\text{ 1}{{\text{0}}^{-7}}\text{ }$.
Complete step by step answer:
Every aqueous solution, whether acidic, alkaline, or neutral, contains both $\text{ }{{\text{H}}^{\text{+ }}}$ and $\text{ O}{{\text{H}}^{-}}\text{ }$ ions. The product of the concentrations is always constant and equal to the $\text{ 1}\times \text{1}{{\text{0}}^{-14}}\text{ }$ at room temperature.
The $\text{ pH }$ is used to the hydrogen ion concentration like that hydroxyl ion concentration in the solution can be expressed as the $\text{ pOH }$ . The hydroxyl ion concentration is expressed as,
$\text{ pOH = }-\text{log}\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
We have to determine the $\text{ pH }$ values of the $\text{ 1}{{\text{0}}^{-8}}\text{ M NaOH }$ . Sodium hydroxide dissociates as follows,
$\text{ NaOH }\to \text{ N}{{\text{a}}^{\text{+ }}}+\text{ O}{{\text{H}}^{-}}\text{ }$
The neutral water also contributes towards the hydroxide concentration. The water dissociates into hydrogen and hydroxyl ions. The equation is represented as follows,
$\text{ }{{\text{H}}_{\text{2}}}\text{O(}l)\text{ }\rightleftharpoons {{\text{H}}^{\text{+}}}\text{(}aq)+\text{O}{{\text{H}}^{-}}(aq)\text{ }$
Dissociation takes place to a very small extent .for pure and neutral water the concentration of hydrogen ion and the hydroxide ion formed is equal to the $\text{ 1}{{\text{0}}^{-7}}\text{ }$ .
$\text{ p}{{\text{K}}_{\text{w}}}\text{ = pH + pOH }$
The water provides $\text{ 1}{{\text{0}}^{-7}}\text{ M }$ hydroxide ion. Thus total hydroxide ion concentration in the solution is equal to hydroxide concentration from the water and hydroxide concentration from the sodium hydroxide solution. Thus total hydroxide in the solution is equal to,
$\text{ 1}{{\text{0}}^{-\text{7}}}\text{(from water) + 1}{{\text{0}}^{-\text{8}}}\text{(from NaOH) = 1}\text{.1}\times \text{1}{{\text{0}}^{-\text{7}}}\text{ M }$
Thus the $\text{ pH }$value of $\text{ NaOH }$the solution is,
$\begin{align}
& \text{ pH =14}-\text{ }\left( -\log \left[ \text{O}{{\text{H}}^{-}} \right] \right) \\
& \Rightarrow 14-\left( -\log (1.1\times {{10}^{-7}}) \right) \\
& \therefore \text{pH = 14}-\text{6}\text{.96 = 7}\text{.04 } \\
\end{align}$
Therefore, the $\text{ pH }$ value of the $\text{ 1}{{\text{0}}^{-8}}\text{ M NaOH }$ solution is $\text{ 7}\text{.04 }$.
Note: we know that the ionic product of the water is written as the product of hydrogen ion concentration and hydroxide ion concentration.$\text{ }{{\text{K}}_{\text{w}}}\text{ = }\left[ {{\text{H}}^{+}} \right]\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$ On taking the log and reversing we have, \[\text{ p}{{\text{K}}_{\text{w}}}\text{ = pH + pOH }\].Thus without thinking we will use this formula and calculate the $\text{ pH }$ as 6 .however, this is a complete baseless as the solution becomes acidic on the addition of base. Thus it must be remembered that the water supplies the hydroxide ions to the solution too.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
