Answer
Verified
407.1k+ views
Hint: The combined gas law looks at the conduct of a steady measure of gas when pressure, volume and additionally temperature is permitted to change.
The most straightforward numerical equation for the combined gas law is:
$K = \dfrac{{PV}}{T}$
In words, the result of pressure duplicated by volume and separated by temperature is a constant.
Be that as it may, the law is typically used to look at previously/after conditions. The combined gas law is communicated as:
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
where:
\[\begin{array}{*{20}{l}}
{{P_i} = {\text{ }}initial{\text{ }}pressure} \\
{{V_i} = {\text{ }}initial{\text{ }}volume} \\
{{T_i} = {\text{ }}initial{\text{ }}absolute{\text{ }}temperature} \\
{{P_f} = {\text{ }}final{\text{ }}pressure} \\
{{V_f} = {\text{ }}final{\text{ }}volume} \\
{{T_f} = {\text{ }}final{\text{ }}absolute{\text{ }}temperature}
\end{array}\]
Complete step by step answer:
Your instrument of decision here will be the joined gas law condition, which resembles this
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
Here
\[{P_1},{\text{ }}{V_1},{\text{ }}and{\text{ }}{T_1}\] speak to the pressure , volume, and temperature of the gas at an underlying state
\[{P_2},{\text{ }}{V_2},{\text{ }}and{\text{ }}{T_2}\] speak to the pressure, volume, and temperature of the gas at a last state
Prior to doing whatever else, ensure that you convert the temperatures from degrees Celsius to Kelvin by utilizing the way that
\[T\left[ {{\text{ }}K{\text{ }}} \right]{\text{ }} = {\text{ }}t\left[ {^ \circ C{\text{ }}} \right]{\text{ }} + {\text{ }}273.15\]
Presently, the thought here is that decreasing the volume of the gas will make the pressure increment. Then again, decreasing the temperature of the gas will make its pressure decrease.
You would thus be able to state that the adjustment in volume and the adjustment in temperature will "complete" one another, for example whichever change is more significant will decide whether the pressure increases or decreases.
Along these lines, improve the consolidated gas law to settle for \[{P_2}\]
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
${P_2} = \dfrac{{{V_1}}}{{{V_2}}} \times \dfrac{{{T_2}}}{{{T_1}}} \times {P_1}$
Plug in your qualities to discover
${{\text{P}}_2} = 2 \times 0.799 \times 1{\text{bar}}$
\[ = 1.6bar\]
Note: I'll leave the appropriate response adjusted to two sig figs, however remember that you just have one significant figure for the underlying pressure of the gas.
As should be obvious, the decrease in volume was more significant than the decrease in temperature; accordingly, the pressure of the gas increased.
The most straightforward numerical equation for the combined gas law is:
$K = \dfrac{{PV}}{T}$
In words, the result of pressure duplicated by volume and separated by temperature is a constant.
Be that as it may, the law is typically used to look at previously/after conditions. The combined gas law is communicated as:
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
where:
\[\begin{array}{*{20}{l}}
{{P_i} = {\text{ }}initial{\text{ }}pressure} \\
{{V_i} = {\text{ }}initial{\text{ }}volume} \\
{{T_i} = {\text{ }}initial{\text{ }}absolute{\text{ }}temperature} \\
{{P_f} = {\text{ }}final{\text{ }}pressure} \\
{{V_f} = {\text{ }}final{\text{ }}volume} \\
{{T_f} = {\text{ }}final{\text{ }}absolute{\text{ }}temperature}
\end{array}\]
Complete step by step answer:
Your instrument of decision here will be the joined gas law condition, which resembles this
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
Here
\[{P_1},{\text{ }}{V_1},{\text{ }}and{\text{ }}{T_1}\] speak to the pressure , volume, and temperature of the gas at an underlying state
\[{P_2},{\text{ }}{V_2},{\text{ }}and{\text{ }}{T_2}\] speak to the pressure, volume, and temperature of the gas at a last state
Prior to doing whatever else, ensure that you convert the temperatures from degrees Celsius to Kelvin by utilizing the way that
\[T\left[ {{\text{ }}K{\text{ }}} \right]{\text{ }} = {\text{ }}t\left[ {^ \circ C{\text{ }}} \right]{\text{ }} + {\text{ }}273.15\]
Presently, the thought here is that decreasing the volume of the gas will make the pressure increment. Then again, decreasing the temperature of the gas will make its pressure decrease.
You would thus be able to state that the adjustment in volume and the adjustment in temperature will "complete" one another, for example whichever change is more significant will decide whether the pressure increases or decreases.
Along these lines, improve the consolidated gas law to settle for \[{P_2}\]
\[\dfrac{{{P_1}{V_1}}}{{{T_1}}} = \dfrac{{{P_2}{V_2}}}{{{T_2}}}\]
${P_2} = \dfrac{{{V_1}}}{{{V_2}}} \times \dfrac{{{T_2}}}{{{T_1}}} \times {P_1}$
Plug in your qualities to discover
${{\text{P}}_2} = 2 \times 0.799 \times 1{\text{bar}}$
\[ = 1.6bar\]
Note: I'll leave the appropriate response adjusted to two sig figs, however remember that you just have one significant figure for the underlying pressure of the gas.
As should be obvious, the decrease in volume was more significant than the decrease in temperature; accordingly, the pressure of the gas increased.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of friction in our daily life
When people say No pun intended what does that mea class 8 english CBSE