Answer
Verified
426.9k+ views
Hint: Water is dissociated to a very small extent into hydrogen and hydroxyl ions, as represented by the equation,
$\text{ }{{\text{H}}_{\text{2}}}\text{O (}l)\text{ }\rightleftharpoons \text{ }{{\text{H}}^{\text{+}}}\text{(}aq)\text{ + O}{{\text{H}}^{-}}(aq)\text{ }$
The dissociation constant for the water $\text{ }{{\text{K}}_{\text{w}}}\text{ }$ is written as the product of the concentration of hydroxyl ion and hydrogen ion.It is as written as below,
$\text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
In pure water, the concentration of hydrogen and hydroxyl ion must be equal to one .Thus,
$\text{ }\left[ {{\text{H}}^{+}} \right]=\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
Complete step by step answer:
We are provided with the following data:
Volume of solution is 1 litre
Temperature of the solution changes from $\text{ }{{\text{T}}_{\text{1}}}\text{ = 298 K }$ to$\text{ }{{\text{T}}_{2}}\text{ = 300 K }$.
Dissociation constant for the water $\text{ }{{\text{K}}_{\text{w}}}\text{(298 K) = 1}{{\text{0}}^{-14}}\text{ }$ and $\text{ }{{\text{K}}_{\text{w}}}\text{(300 K) = 2}\text{.56}\times \text{1}{{\text{0}}^{-14}}\text{ }$
We have to calculate the change in the hydrogen ion $\text{ }{{\text{H}}^{\text{+}}}\text{ }$ concentration in the given volume of solution.
The dissociation constant for the water $\text{ }{{\text{K}}_{\text{w}}}\text{ }$ is written as the product of the concentration of hydroxyl ion and hydrogen ion.It is as written as below,
$\text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
In pure water, the concentration of hydrogen and hydroxyl ion must be equal to one .Thus,
$\text{ }\left[ {{\text{H}}^{+}} \right]=\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
a) At $\text{ 300 K }$ temperature:
The hydrogen ion concentration is calculated from the ionic product of the water. The ionic product of the water at $\text{ 298 K }$is equal to $\text{1}{{\text{0}}^{-14}}\text{ }$.Thus, from ionic product of water the concentration of hydrogen ion is as follows,
$\begin{align}
& \text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]_{(298\text{K)}}^{2}\text{ } \\
& \Rightarrow {{\left[ {{\text{H}}^{+}} \right]}_{(298\text{K)}}}\text{ = }\sqrt{{{\text{K}}_{\text{w}}}}\text{ = }\sqrt{{{10}^{-14}}}\text{ } \\
& \therefore {{\left[ {{\text{H}}^{+}} \right]}_{(298\text{K)}}}\text{ = }{{10}^{-7}}\text{ } \\
\end{align}$
Thus, the hydrogen ion concentration at the $\text{ 298 K }$is equal to $\text{ 1}{{\text{0}}^{-7\text{ }}}$ .
b) At $\text{ 310 K }$ temperature:
The hydrogen ion concentration is calculated from the ionic product of the water. The ionic product of the water at $\text{ 310 K }$is equal to $\text{ 2}\text{.56 }\times \text{ 1}{{\text{0}}^{-14}}\text{ }$.Thus, from ionic product of water the concentration of hydrogen ion is as follows,
$\begin{align}
& \text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]_{(310\text{K)}}^{2}\text{ } \\
& \Rightarrow {{\left[ {{\text{H}}^{+}} \right]}_{(310\text{K)}}}\text{ = }\sqrt{{{\text{K}}_{\text{w}}}}\text{ = }\sqrt{2.56\times {{10}^{-14}}}\text{ } \\
& \therefore {{\left[ {{\text{H}}^{+}} \right]}_{(310\text{K)}}}\text{ = 1}\text{.6}\times {{10}^{-7}}\text{ } \\
\end{align}$
Thus, the hydrogen ion concentration at the $\text{ 310 K }$is equal to $\text{ 1}\text{.6}\times {{10}^{-7}}\text{ }$ .
So, change in the hydrogen ion concentration at the $\text{ 310 K }$and $\text{ 298 K }$would be,
$\text{ }{{\left[ {{\text{H}}^{+}} \right]}_{(310\text{K)}}}-{{\left[ {{\text{H}}^{+}} \right]}_{(298\text{K)}}}\text{ = }\left( \text{1}\text{.6}\times {{10}^{-7}} \right)-\left( 1.0\times {{10}^{-7}} \right)\text{ = 0}\text{.6}\times {{10}^{-7}}\text{ }$
Therefore change in concentration of hydrogen ion is equal to $\text{ 0}\text{.6}\times {{10}^{-7}}\text{ }$.
Note: Note that, pure water means a water which is free from any kind of impurities. For pure water that ionic product or the dissociation constant of water is equal to $\text{ 1}{{\text{0}}^{-14}}\text{ }$. However, with increase in temperature more number of water molecules undergo the dissociation into its corresponding hydroxyl and hydrogen ion thus the dissociation constant increases. We can say dissociation of water is directly related to the temperature.
$\text{ }{{\text{H}}_{\text{2}}}\text{O (}l)\text{ }\rightleftharpoons \text{ }{{\text{H}}^{\text{+}}}\text{(}aq)\text{ + O}{{\text{H}}^{-}}(aq)\text{ }$
The dissociation constant for the water $\text{ }{{\text{K}}_{\text{w}}}\text{ }$ is written as the product of the concentration of hydroxyl ion and hydrogen ion.It is as written as below,
$\text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
In pure water, the concentration of hydrogen and hydroxyl ion must be equal to one .Thus,
$\text{ }\left[ {{\text{H}}^{+}} \right]=\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
Complete step by step answer:
We are provided with the following data:
Volume of solution is 1 litre
Temperature of the solution changes from $\text{ }{{\text{T}}_{\text{1}}}\text{ = 298 K }$ to$\text{ }{{\text{T}}_{2}}\text{ = 300 K }$.
Dissociation constant for the water $\text{ }{{\text{K}}_{\text{w}}}\text{(298 K) = 1}{{\text{0}}^{-14}}\text{ }$ and $\text{ }{{\text{K}}_{\text{w}}}\text{(300 K) = 2}\text{.56}\times \text{1}{{\text{0}}^{-14}}\text{ }$
We have to calculate the change in the hydrogen ion $\text{ }{{\text{H}}^{\text{+}}}\text{ }$ concentration in the given volume of solution.
The dissociation constant for the water $\text{ }{{\text{K}}_{\text{w}}}\text{ }$ is written as the product of the concentration of hydroxyl ion and hydrogen ion.It is as written as below,
$\text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
In pure water, the concentration of hydrogen and hydroxyl ion must be equal to one .Thus,
$\text{ }\left[ {{\text{H}}^{+}} \right]=\left[ \text{O}{{\text{H}}^{-}} \right]\text{ }$
a) At $\text{ 300 K }$ temperature:
The hydrogen ion concentration is calculated from the ionic product of the water. The ionic product of the water at $\text{ 298 K }$is equal to $\text{1}{{\text{0}}^{-14}}\text{ }$.Thus, from ionic product of water the concentration of hydrogen ion is as follows,
$\begin{align}
& \text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]_{(298\text{K)}}^{2}\text{ } \\
& \Rightarrow {{\left[ {{\text{H}}^{+}} \right]}_{(298\text{K)}}}\text{ = }\sqrt{{{\text{K}}_{\text{w}}}}\text{ = }\sqrt{{{10}^{-14}}}\text{ } \\
& \therefore {{\left[ {{\text{H}}^{+}} \right]}_{(298\text{K)}}}\text{ = }{{10}^{-7}}\text{ } \\
\end{align}$
Thus, the hydrogen ion concentration at the $\text{ 298 K }$is equal to $\text{ 1}{{\text{0}}^{-7\text{ }}}$ .
b) At $\text{ 310 K }$ temperature:
The hydrogen ion concentration is calculated from the ionic product of the water. The ionic product of the water at $\text{ 310 K }$is equal to $\text{ 2}\text{.56 }\times \text{ 1}{{\text{0}}^{-14}}\text{ }$.Thus, from ionic product of water the concentration of hydrogen ion is as follows,
$\begin{align}
& \text{ }{{\text{K}}_{\text{w}}}\text{ }=\text{ }\left[ {{\text{H}}^{+}} \right]_{(310\text{K)}}^{2}\text{ } \\
& \Rightarrow {{\left[ {{\text{H}}^{+}} \right]}_{(310\text{K)}}}\text{ = }\sqrt{{{\text{K}}_{\text{w}}}}\text{ = }\sqrt{2.56\times {{10}^{-14}}}\text{ } \\
& \therefore {{\left[ {{\text{H}}^{+}} \right]}_{(310\text{K)}}}\text{ = 1}\text{.6}\times {{10}^{-7}}\text{ } \\
\end{align}$
Thus, the hydrogen ion concentration at the $\text{ 310 K }$is equal to $\text{ 1}\text{.6}\times {{10}^{-7}}\text{ }$ .
So, change in the hydrogen ion concentration at the $\text{ 310 K }$and $\text{ 298 K }$would be,
$\text{ }{{\left[ {{\text{H}}^{+}} \right]}_{(310\text{K)}}}-{{\left[ {{\text{H}}^{+}} \right]}_{(298\text{K)}}}\text{ = }\left( \text{1}\text{.6}\times {{10}^{-7}} \right)-\left( 1.0\times {{10}^{-7}} \right)\text{ = 0}\text{.6}\times {{10}^{-7}}\text{ }$
Therefore change in concentration of hydrogen ion is equal to $\text{ 0}\text{.6}\times {{10}^{-7}}\text{ }$.
Note: Note that, pure water means a water which is free from any kind of impurities. For pure water that ionic product or the dissociation constant of water is equal to $\text{ 1}{{\text{0}}^{-14}}\text{ }$. However, with increase in temperature more number of water molecules undergo the dissociation into its corresponding hydroxyl and hydrogen ion thus the dissociation constant increases. We can say dissociation of water is directly related to the temperature.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE