Answer
Verified
408.6k+ views
Hint: Here, we will simply add and subtract square of a constant and write the term containing $n$ such that it forms a term in a form $2ab$, thus, this will help us to apply the square identities and thus, ‘complete the square’ and solve it further to find the required roots of the given quadratic equation.
Formula Used:
${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
Complete step-by-step answer:
The given quadratic equation is:
$2{n^2} - 7n + 3 = 0$
Now, dividing both sides by 2, we get,
${n^2} - \dfrac{7}{2}n + \dfrac{3}{2} = 0$
Now, since, we are required to solve this question using completing the square, hence, we will write this quadratic equation as:
${\left( n \right)^2} - 2\left( n \right)\left( {\dfrac{7}{4}} \right) + {\left( {\dfrac{7}{4}} \right)^2} - {\left( {\dfrac{7}{4}} \right)^2} + \dfrac{3}{2} = 0$
Hence, even if this quadratic equation was not a perfect square, but we tried to make it a perfect square by adding and subtracting the square of a constant such that, we complete the square by making the identity, ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
Hence, using this identity, we get,
${\left( {n - \dfrac{7}{4}} \right)^2} - \dfrac{{49}}{{16}} + \dfrac{3}{2} = 0$
$ \Rightarrow {\left( {n - \dfrac{7}{4}} \right)^2} + \dfrac{{ - 49 + 24}}{{16}} = 0$
Hence, we get,
$ \Rightarrow {\left( {n - \dfrac{7}{4}} \right)^2} - \dfrac{{25}}{{16}} = 0$
Adding $\dfrac{{25}}{{16}}$ on both sides,
$ \Rightarrow {\left( {n - \dfrac{7}{4}} \right)^2} = \dfrac{{25}}{{16}}$
$ \Rightarrow {\left( {n - \dfrac{7}{4}} \right)^2} = {\left( {\dfrac{5}{4}} \right)^2}$
Taking square root on both sides, we get
$ \Rightarrow \left( {n - \dfrac{7}{4}} \right) = \pm \dfrac{5}{4}$
Adding $\dfrac{7}{4}$ on both the sides, we get,
$ \Rightarrow n = \pm \dfrac{5}{4} + \dfrac{7}{4}$
Hence,
$n = \dfrac{5}{4} + \dfrac{7}{4} = \dfrac{{5 + 7}}{4} = \dfrac{{12}}{4} = 3$
Or $n = - \dfrac{5}{4} + \dfrac{7}{4} = \dfrac{{7 - 5}}{4} = \dfrac{2}{4} = \dfrac{1}{2}$
Therefore, the roots of the given quadratic equation $2{n^2} - 7n + 3 = 0$ are 3 and $\dfrac{1}{2}$
Thus, this is the required answer.
Note:
If in the question, it was not mentioned that we have to use the method of completing the square, then, we could have used the quadratic formula to solve the given quadratic equation.
Given quadratic equation is $2{n^2} - 7n + 3 = 0$
Now, dividing both sides by 2, we get,
${n^2} - \dfrac{7}{2}n + \dfrac{3}{2} = 0$
Comparing this with the general quadratic equation i.e. $a{x^2} + bx + c = 0$
We have,
$a = 1$, $b = \dfrac{{ - 7}}{2}$ and $c = \dfrac{3}{2}$
Now, we can find the roots of a quadratic equation using the quadratic formula, $n = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Hence, for the equation ${n^2} - \dfrac{7}{2}n + \dfrac{3}{2} = 0$, substituting$a = 1$, $b = \dfrac{{ - 7}}{2}$and $c = \dfrac{3}{2}$, we get
$n = \dfrac{{\dfrac{7}{2} \pm \sqrt {{{\left( {\dfrac{{ - 7}}{2}} \right)}^2} - 4\left( 1 \right)\left( {\dfrac{3}{2}} \right)} }}{{2\left( 1 \right)}}$
$ \Rightarrow n = \dfrac{{\dfrac{7}{2} \pm \sqrt {\dfrac{{49}}{4} - 6} }}{2} = \dfrac{{\dfrac{7}{2} \pm \sqrt {\dfrac{{49 - 24}}{4}} }}{2} = \dfrac{{\dfrac{7}{2} \pm \sqrt {\dfrac{{25}}{4}} }}{2}$
Solving further, we get,
\[ \Rightarrow n = \dfrac{{\dfrac{7}{2} \pm \dfrac{5}{2}}}{2} = \dfrac{{7 \pm 5}}{4}\]
Hence, we get,
\[n = \dfrac{{7 + 5}}{4} = \dfrac{{12}}{4} = 3\]
Or \[n = \dfrac{{7 - 5}}{4} = \dfrac{2}{4} = \dfrac{1}{2}\]
Therefore, the roots of the given quadratic equation $2{n^2} - 7n + 3 = 0$ are 3 and $\dfrac{1}{2}$
Thus, this is the required answer.
Formula Used:
${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
Complete step-by-step answer:
The given quadratic equation is:
$2{n^2} - 7n + 3 = 0$
Now, dividing both sides by 2, we get,
${n^2} - \dfrac{7}{2}n + \dfrac{3}{2} = 0$
Now, since, we are required to solve this question using completing the square, hence, we will write this quadratic equation as:
${\left( n \right)^2} - 2\left( n \right)\left( {\dfrac{7}{4}} \right) + {\left( {\dfrac{7}{4}} \right)^2} - {\left( {\dfrac{7}{4}} \right)^2} + \dfrac{3}{2} = 0$
Hence, even if this quadratic equation was not a perfect square, but we tried to make it a perfect square by adding and subtracting the square of a constant such that, we complete the square by making the identity, ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$
Hence, using this identity, we get,
${\left( {n - \dfrac{7}{4}} \right)^2} - \dfrac{{49}}{{16}} + \dfrac{3}{2} = 0$
$ \Rightarrow {\left( {n - \dfrac{7}{4}} \right)^2} + \dfrac{{ - 49 + 24}}{{16}} = 0$
Hence, we get,
$ \Rightarrow {\left( {n - \dfrac{7}{4}} \right)^2} - \dfrac{{25}}{{16}} = 0$
Adding $\dfrac{{25}}{{16}}$ on both sides,
$ \Rightarrow {\left( {n - \dfrac{7}{4}} \right)^2} = \dfrac{{25}}{{16}}$
$ \Rightarrow {\left( {n - \dfrac{7}{4}} \right)^2} = {\left( {\dfrac{5}{4}} \right)^2}$
Taking square root on both sides, we get
$ \Rightarrow \left( {n - \dfrac{7}{4}} \right) = \pm \dfrac{5}{4}$
Adding $\dfrac{7}{4}$ on both the sides, we get,
$ \Rightarrow n = \pm \dfrac{5}{4} + \dfrac{7}{4}$
Hence,
$n = \dfrac{5}{4} + \dfrac{7}{4} = \dfrac{{5 + 7}}{4} = \dfrac{{12}}{4} = 3$
Or $n = - \dfrac{5}{4} + \dfrac{7}{4} = \dfrac{{7 - 5}}{4} = \dfrac{2}{4} = \dfrac{1}{2}$
Therefore, the roots of the given quadratic equation $2{n^2} - 7n + 3 = 0$ are 3 and $\dfrac{1}{2}$
Thus, this is the required answer.
Note:
If in the question, it was not mentioned that we have to use the method of completing the square, then, we could have used the quadratic formula to solve the given quadratic equation.
Given quadratic equation is $2{n^2} - 7n + 3 = 0$
Now, dividing both sides by 2, we get,
${n^2} - \dfrac{7}{2}n + \dfrac{3}{2} = 0$
Comparing this with the general quadratic equation i.e. $a{x^2} + bx + c = 0$
We have,
$a = 1$, $b = \dfrac{{ - 7}}{2}$ and $c = \dfrac{3}{2}$
Now, we can find the roots of a quadratic equation using the quadratic formula, $n = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Hence, for the equation ${n^2} - \dfrac{7}{2}n + \dfrac{3}{2} = 0$, substituting$a = 1$, $b = \dfrac{{ - 7}}{2}$and $c = \dfrac{3}{2}$, we get
$n = \dfrac{{\dfrac{7}{2} \pm \sqrt {{{\left( {\dfrac{{ - 7}}{2}} \right)}^2} - 4\left( 1 \right)\left( {\dfrac{3}{2}} \right)} }}{{2\left( 1 \right)}}$
$ \Rightarrow n = \dfrac{{\dfrac{7}{2} \pm \sqrt {\dfrac{{49}}{4} - 6} }}{2} = \dfrac{{\dfrac{7}{2} \pm \sqrt {\dfrac{{49 - 24}}{4}} }}{2} = \dfrac{{\dfrac{7}{2} \pm \sqrt {\dfrac{{25}}{4}} }}{2}$
Solving further, we get,
\[ \Rightarrow n = \dfrac{{\dfrac{7}{2} \pm \dfrac{5}{2}}}{2} = \dfrac{{7 \pm 5}}{4}\]
Hence, we get,
\[n = \dfrac{{7 + 5}}{4} = \dfrac{{12}}{4} = 3\]
Or \[n = \dfrac{{7 - 5}}{4} = \dfrac{2}{4} = \dfrac{1}{2}\]
Therefore, the roots of the given quadratic equation $2{n^2} - 7n + 3 = 0$ are 3 and $\dfrac{1}{2}$
Thus, this is the required answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths