Answer
Verified
407.1k+ views
Hint:While balancing a chemical equation we have to keep in mind that the number of atoms on each side should be equal. We can multiply the stoichiometric coefficient of each reactant and product and make each type of atom same. Here, atoms are hydrogen oxygen magnesium phosphorus. We have found that equation in which each atom is balanced at last.
Complete step-by-step answer:We have the reaction taking place in between magnesium hydroxide and phosphoric acid. Magnesium is an element of the group $2$ so if it reacts with water it makes hydroxide of formula \[Mg{(OH)_2}\] while phosphoric acid has an oxidation number of phosphorus as $ + 5$ . They reacts and forms magnesium phosphate and release water in the solution.
\[{H_3}P{O_4}\, + \,Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2}\, + \,{H_2}O\, - - - - - - - - - - - - - \,(1)\]
Count the number of atoms left hand side and right hand side. We have atoms on left hand side as $(\,1P,\,5H,\,6O\,and\,1Mg)$ here just symbols are used to define the numbers of atoms, now lets’ count on right hand side and we have $(\,2P,\,2H,\,9O\,and\,3Mg)$. Now here we have four species, let’s try to balance them first by multiplying the left hand side. This is because the left hand side has fewer atoms. Let’s start by multiplying phosphoric acid by number $2$ and magnesium hydroxide by number $3$ we get the equation as
\[2{H_3}P{O_4}\, + \,3Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2}\, + \,{H_2}O\, - - - - - - - - - - - - - (2)\] .
To confirm the change in number of atoms let’s again count the atoms left hand side have $(2P,\,12H,\,14O\,and\,3Mg)$ and right hand side have $(\,2P,\,2H,\,9O\,and\,3Mg)$. Now as the number on the right hand side decreases we have to multiply the right hand side. We can multiply the water molecule by number $6$ . The equation becomes as-
\[2{H_3}P{O_4}\, + \,3Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2} + \,6{H_2}O\, - - - - - - - - - - - - (3)\]
If you count the number of atoms on both sides it becomes equal. Both sides we have two phosphorus, hydrogens are twelve, oxygen are fourteen in number and at last we have three magnesium.
Thus the balanced chemical equation is \[2{H_3}P{O_4}\, + \,3Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2} + \,6{H_2}O\, - - - - (Final\,answer)\]
Note:This is a neutralization reaction of an acid with base, after combination they form salt and water. The reaction is exothermic in nature; it means that energy is released in a larger amount. The balancing of chemical equations is very important because by this process we get to know the moles of reactant used and products formed.
Complete step-by-step answer:We have the reaction taking place in between magnesium hydroxide and phosphoric acid. Magnesium is an element of the group $2$ so if it reacts with water it makes hydroxide of formula \[Mg{(OH)_2}\] while phosphoric acid has an oxidation number of phosphorus as $ + 5$ . They reacts and forms magnesium phosphate and release water in the solution.
\[{H_3}P{O_4}\, + \,Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2}\, + \,{H_2}O\, - - - - - - - - - - - - - \,(1)\]
Count the number of atoms left hand side and right hand side. We have atoms on left hand side as $(\,1P,\,5H,\,6O\,and\,1Mg)$ here just symbols are used to define the numbers of atoms, now lets’ count on right hand side and we have $(\,2P,\,2H,\,9O\,and\,3Mg)$. Now here we have four species, let’s try to balance them first by multiplying the left hand side. This is because the left hand side has fewer atoms. Let’s start by multiplying phosphoric acid by number $2$ and magnesium hydroxide by number $3$ we get the equation as
\[2{H_3}P{O_4}\, + \,3Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2}\, + \,{H_2}O\, - - - - - - - - - - - - - (2)\] .
To confirm the change in number of atoms let’s again count the atoms left hand side have $(2P,\,12H,\,14O\,and\,3Mg)$ and right hand side have $(\,2P,\,2H,\,9O\,and\,3Mg)$. Now as the number on the right hand side decreases we have to multiply the right hand side. We can multiply the water molecule by number $6$ . The equation becomes as-
\[2{H_3}P{O_4}\, + \,3Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2} + \,6{H_2}O\, - - - - - - - - - - - - (3)\]
If you count the number of atoms on both sides it becomes equal. Both sides we have two phosphorus, hydrogens are twelve, oxygen are fourteen in number and at last we have three magnesium.
Thus the balanced chemical equation is \[2{H_3}P{O_4}\, + \,3Mg{(OH)_2}\, \to \,M{g_3}{(P{O_4})_2} + \,6{H_2}O\, - - - - (Final\,answer)\]
Note:This is a neutralization reaction of an acid with base, after combination they form salt and water. The reaction is exothermic in nature; it means that energy is released in a larger amount. The balancing of chemical equations is very important because by this process we get to know the moles of reactant used and products formed.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE