Answer
Verified
438k+ views
Hint:Recall the formula for the root mean square speed and the escape velocity of an object. Rearrange these equations using the condition given in the question.
Formulae used:
The root mean square velocity is given by
\[\Rightarrow{v_{rms}} = \sqrt {\dfrac{{3KT}}{m}} \]
Here, \[{v_{rms}}\] is the root mean square velocity, \[K\] is Boltzmann constant, \[T\] is the temperature in Kelvin and \[m\] is the mass of one mole of gas in kilogram.
The escape velocity of an object from a planet is
\[\Rightarrow{v_{esc}} = \sqrt {2gR} \]
Here, \[{v_{esc}}\] is the escape velocity of the object, \[g\] is the acceleration due to gravity and \[R\] is the radius of the planet.
Complete step by step answer:
Rewrite equation (2) for the root mean square speed of the hydrogen molecule.
\[\Rightarrow{v_{rms}} = \sqrt {\dfrac{{3KT}}{m}} \]
Here, \[{v_{rms}}\] is the root mean square speed of a hydrogen molecule and \[m\] is the mass of one mole of hydrogen in kilogram.
Rewrite equation (2) for the escape velocity of hydrogen molecule from the moon is
\[\Rightarrow{v_{esc}} = \sqrt {2gR} \]
Here, \[{v_{esc}}\] is the escape velocity of the hydrogen molecule from the moon and \[R\] is the radius of the moon.
The root mean square velocity \[{v_{rms}}\] of the hydrogen molecule equals the escape velocity \[{v_{esc}}\] of the hydrogen molecule from the moon.
\[\Rightarrow{v_{rms}} = {v_{esc}}\]
Substitute \[\sqrt {\dfrac{{3KT}}{m}} \] for \[{v_{rms}}\] and \[\sqrt {2gR} \] for \[{v_{rms}}\] in the above equation.
\[\Rightarrow\sqrt {\dfrac{{3KT}}{m}} = \sqrt {2gR} \]
Take square on both the sides of the above equation.
\[\Rightarrow\dfrac{{3KT}}{m} = 2gR\]
Rearrange the above equation for the temperature \[T\].
\[\Rightarrow T = \dfrac{{2mgR}}{{3K}}\]
Hence, the absolute temperature at which the root mean square speed of the hydrogen molecule is equal to the escape velocity of the hydrogen molecule from the moon is \[\dfrac{{2mgR}}{{3K}}\].
Hence, the correct option is D.
Note:The quantity in the root mean square speed formula is the mass of one mole of gas in kilogram and not the molar mass of the gas.And also remember that root mean square velocity is the square root of the mean of squares of the velocity of individual gas molecules while average velocity is the arithmetic mean of the velocities of different molecules of a gas at a given temperature.So don’t get confuse among both of them.
Formulae used:
The root mean square velocity is given by
\[\Rightarrow{v_{rms}} = \sqrt {\dfrac{{3KT}}{m}} \]
Here, \[{v_{rms}}\] is the root mean square velocity, \[K\] is Boltzmann constant, \[T\] is the temperature in Kelvin and \[m\] is the mass of one mole of gas in kilogram.
The escape velocity of an object from a planet is
\[\Rightarrow{v_{esc}} = \sqrt {2gR} \]
Here, \[{v_{esc}}\] is the escape velocity of the object, \[g\] is the acceleration due to gravity and \[R\] is the radius of the planet.
Complete step by step answer:
Rewrite equation (2) for the root mean square speed of the hydrogen molecule.
\[\Rightarrow{v_{rms}} = \sqrt {\dfrac{{3KT}}{m}} \]
Here, \[{v_{rms}}\] is the root mean square speed of a hydrogen molecule and \[m\] is the mass of one mole of hydrogen in kilogram.
Rewrite equation (2) for the escape velocity of hydrogen molecule from the moon is
\[\Rightarrow{v_{esc}} = \sqrt {2gR} \]
Here, \[{v_{esc}}\] is the escape velocity of the hydrogen molecule from the moon and \[R\] is the radius of the moon.
The root mean square velocity \[{v_{rms}}\] of the hydrogen molecule equals the escape velocity \[{v_{esc}}\] of the hydrogen molecule from the moon.
\[\Rightarrow{v_{rms}} = {v_{esc}}\]
Substitute \[\sqrt {\dfrac{{3KT}}{m}} \] for \[{v_{rms}}\] and \[\sqrt {2gR} \] for \[{v_{rms}}\] in the above equation.
\[\Rightarrow\sqrt {\dfrac{{3KT}}{m}} = \sqrt {2gR} \]
Take square on both the sides of the above equation.
\[\Rightarrow\dfrac{{3KT}}{m} = 2gR\]
Rearrange the above equation for the temperature \[T\].
\[\Rightarrow T = \dfrac{{2mgR}}{{3K}}\]
Hence, the absolute temperature at which the root mean square speed of the hydrogen molecule is equal to the escape velocity of the hydrogen molecule from the moon is \[\dfrac{{2mgR}}{{3K}}\].
Hence, the correct option is D.
Note:The quantity in the root mean square speed formula is the mass of one mole of gas in kilogram and not the molar mass of the gas.And also remember that root mean square velocity is the square root of the mean of squares of the velocity of individual gas molecules while average velocity is the arithmetic mean of the velocities of different molecules of a gas at a given temperature.So don’t get confuse among both of them.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE