
At\[\text{ T}\left( \text{K} \right)\] , the partial pressures of$\text{ S}{{\text{O}}_{\text{2}}}$, $\text{ }{{\text{O}}_{\text{2}}}$ and $\text{ S}{{\text{O}}_{3}}$ are\[0.662\] , \[0.100\] and \[0.331\] atm, respectively for the reaction $\begin{matrix}
\text{ 2S}{{\text{O}}_{\text{2}}}(g) & \text{+} & {{\text{O}}_{\text{2}}}(g) & \rightleftharpoons & \text{2S}{{\text{O}}_{\text{3}}}(g) \\
\end{matrix}$at equilibrium. What is the partial pressure in atm, of $\text{ }{{\text{O}}_{\text{2}}}$when the equilibrium partial pressures of $\text{ S}{{\text{O}}_{\text{2}}}$and $\text{ S}{{\text{O}}_{3}}$ are equal at the same temperature?
A) \[0.4\]
B) \[0.8\]
C) \[0.25\]
D) \[2.5\]
Answer
525.6k+ views
Hint: For gaseous state, the equilibrium constant ${{\text{K}}_{\text{p}}}$ is written in terms of the partial pressure, the reactant and pressure. Here, The ${{\text{K}}_{\text{p}}}$ can be calculated by considering the partial pressure of $\text{ S}{{\text{O}}_{\text{2}}}$,$\text{ S}{{\text{O}}_{3}}$ and $\text{ }{{\text{O}}_{\text{2}}}$. Since, we are interested to find out the partial pressure of $\text{ }{{\text{O}}_{\text{2}}}$at a condition $\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}$, the equilibrium constant will remains the same.
Complete step by step answer:
In an ideal gaseous mixture, each component obeys Dalton’s law of partial pressures that is the total pressure exerted by the component on the mixture is equal to the partial pressure of the component. It is represented as,
$\text{ }{{\text{p}}_{\text{i}}}={{x}_{\text{i}}}\text{P }$,
Where P is the total pressure and ${{\text{p}}_{\text{i}}}$ is equal to the partial pressure of the ‘i’ component.
For a gaseous state reaction in which the A and B in gaseous state reacts and produces M and N in the gaseous state. The reaction is as shown below,
$\text{aA(g) + bB(g) }\rightleftharpoons \text{ mM(g) + nN(g)}$
We have, \[{{\text{p}}_{\text{A}}}\text{=}{{\text{X}}_{\text{A}}}\text{P}\] ,\[{{\text{p}}_{B}}\text{=}{{\text{X}}_{B}}\text{P}\], \[{{\text{p}}_{M}}\text{=}{{\text{X}}_{M}}\text{P}\] and \[{{\text{p}}_{N}}\text{=}{{\text{X}}_{N}}\text{P}\]
The equilibrium constant for the reaction at the equilibrium condition is given as,
${{\text{K}}_{\text{p}}}\text{ = }\dfrac{\text{p}_{\text{M}}^{\text{m}}\text{ p}_{\text{N}}^{\text{n}}}{\text{p}_{\text{A}}^{\text{a}}\text{ p}_{\text{B}}^{\text{b}}}$
Where A and B are reactant and M and N are the product of the reaction.
Here, we are given,
Partial pressure of $\text{ S}{{\text{O}}_{\text{2}}}$ $\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = 0}\text{.662 atm}$
Partial pressure of $\text{ S}{{\text{O}}_{3}}$ $\text{p}_{\text{S}{{\text{O}}_{3}}}^{{}}\text{ = 0}\text{.331 atm}$
Partial pressure of $\text{ }{{\text{O}}_{\text{2}}}$ $\text{p}_{\text{ }{{\text{O}}_{\text{2}}}}^{{}}\text{ = 0}\text{.100 atm}$
We are interested to find out the partial pressure of oxygen when the $\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}$
The sulfur dioxide reacts in presence of oxygen to produce sulphur trioxide. The reaction is reversible. It is depicted as follows,
$\begin{matrix}
\text{ 2S}{{\text{O}}_{\text{2}}} & \text{+} & {{\text{O}}_{\text{2}}} & \rightleftharpoons & \text{2S}{{\text{O}}_{\text{3}}} \\
\end{matrix}$
Let’s first find out the equilibrium constant${{\text{K}}_{\text{p}}}$. Using the law of mass action for product and reactant we get,
${{\text{K}}_{\text{p}}}\text{ = }\dfrac{\text{p}_{\text{S}{{\text{O}}_{\text{3}}}}^{\text{2}}\text{ }}{\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{\text{2}}\text{ p}_{{{\text{O}}_{\text{2}}}}^{\text{1}}}$
Substitute the values in the equilibrium constant, we have
$\begin{align}
& \text{ }{{\text{K}}_{\text{p}}}\text{ = }\dfrac{{{\left( 0.331 \right)}^{\text{2}}}\text{ }}{{{\left( 0.662 \right)}^{\text{2}}}\text{ }\left( 0.100 \right)} \\
& \Rightarrow {{\text{K}}_{\text{p}}}\text{ = }\dfrac{\left( 0.109 \right)\text{ }}{\left( 0.438 \right)\text{ }\left( 0.100 \right)} \\
& \Rightarrow {{\text{K}}_{\text{p}}}\text{ = }\dfrac{\left( 0.109 \right)\text{ }}{\left( 0.0438 \right)} \\
& \Rightarrow {{\text{K}}_{\text{p}}}\text{ = }\dfrac{\left( 0.109 \right)\text{ }}{\left( 0.0438 \right)} \\
& \Rightarrow {{\text{K}}_{\text{p}}}\text{ = 2}\text{.48 }\simeq \text{ 2}\text{.5 } \\
\end{align}$
Therefore, the equilibrium constant ${{\text{K}}_{\text{p}}}\text{ = 2}\text{.5 }$.
We want to find the $\text{p}_{\text{ }{{\text{O}}_{\text{2}}}}^{'}\text{ }$, when $\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}$
Substitute values in the equation of equilibrium constant ${{\text{K}}_{\text{p}}}$.we have,
$\begin{align}
& \text{ }{{\text{K}}_{\text{p}}}\text{ = }\dfrac{\text{p}_{\text{S}{{\text{O}}_{\text{3}}}}^{\text{2}}\text{ }}{\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{\text{2}}\text{ p}_{{{\text{O}}_{\text{2}}}}^{'}} \\
& \Rightarrow 2.5\text{ = }\dfrac{\left( \text{p}_{\text{S}{{\text{O}}_{\text{3}}}}^{\text{2}} \right)\text{ }}{\left( \text{p}_{\text{S}{{\text{O}}_{3}}}^{\text{2}} \right)\text{ p}_{{{\text{O}}_{\text{2}}}}^{'}}\text{ }\because \text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}\text{ , }{{\text{K}}_{\text{p}}}=2.5 \\
& \Rightarrow 2.5\text{ = }\dfrac{\text{1 }}{\text{ p}_{{{\text{O}}_{\text{2}}}}^{'}} \\
& \Rightarrow \text{p}_{{{\text{O}}_{\text{2}}}}^{'}\text{ = }\dfrac{1}{2.5} \\
& \therefore \text{p}_{{{\text{O}}_{\text{2}}}}^{'}\text{ = 0}\text{.4} \\
\end{align}$
Therefore, the partial pressure of oxygen $\text{p}_{{{\text{O}}_{\text{2}}}}^{'}\text{ }$when $\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}$is equalled to$\text{0}\text{.4}$.
Hence, (A) is the correct option.
Note: The equilibrium constant can be written in the terms of activities$\text{ (}{{\text{a}}_{\text{i}}}\text{) }$, molar concentration$\text{ (}{{\text{C}}_{\text{i}}}\text{) }$, or mole fractions $\text{ (}{{\text{X}}_{\text{i}}}\text{) }$of the species involved in the reaction. The equilibrium constant in terms of concentration is written as,
$\begin{align}
& \text{for reaction,} \\
& \text{ aA + bB }\rightleftharpoons \text{ cC + dD} \\
& {{\text{K}}_{\text{p}}}\text{ = }\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}\text{ }}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}} \\
\end{align}$
Complete step by step answer:
In an ideal gaseous mixture, each component obeys Dalton’s law of partial pressures that is the total pressure exerted by the component on the mixture is equal to the partial pressure of the component. It is represented as,
$\text{ }{{\text{p}}_{\text{i}}}={{x}_{\text{i}}}\text{P }$,
Where P is the total pressure and ${{\text{p}}_{\text{i}}}$ is equal to the partial pressure of the ‘i’ component.
For a gaseous state reaction in which the A and B in gaseous state reacts and produces M and N in the gaseous state. The reaction is as shown below,
$\text{aA(g) + bB(g) }\rightleftharpoons \text{ mM(g) + nN(g)}$
We have, \[{{\text{p}}_{\text{A}}}\text{=}{{\text{X}}_{\text{A}}}\text{P}\] ,\[{{\text{p}}_{B}}\text{=}{{\text{X}}_{B}}\text{P}\], \[{{\text{p}}_{M}}\text{=}{{\text{X}}_{M}}\text{P}\] and \[{{\text{p}}_{N}}\text{=}{{\text{X}}_{N}}\text{P}\]
The equilibrium constant for the reaction at the equilibrium condition is given as,
${{\text{K}}_{\text{p}}}\text{ = }\dfrac{\text{p}_{\text{M}}^{\text{m}}\text{ p}_{\text{N}}^{\text{n}}}{\text{p}_{\text{A}}^{\text{a}}\text{ p}_{\text{B}}^{\text{b}}}$
Where A and B are reactant and M and N are the product of the reaction.
Here, we are given,
Partial pressure of $\text{ S}{{\text{O}}_{\text{2}}}$ $\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = 0}\text{.662 atm}$
Partial pressure of $\text{ S}{{\text{O}}_{3}}$ $\text{p}_{\text{S}{{\text{O}}_{3}}}^{{}}\text{ = 0}\text{.331 atm}$
Partial pressure of $\text{ }{{\text{O}}_{\text{2}}}$ $\text{p}_{\text{ }{{\text{O}}_{\text{2}}}}^{{}}\text{ = 0}\text{.100 atm}$
We are interested to find out the partial pressure of oxygen when the $\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}$
The sulfur dioxide reacts in presence of oxygen to produce sulphur trioxide. The reaction is reversible. It is depicted as follows,
$\begin{matrix}
\text{ 2S}{{\text{O}}_{\text{2}}} & \text{+} & {{\text{O}}_{\text{2}}} & \rightleftharpoons & \text{2S}{{\text{O}}_{\text{3}}} \\
\end{matrix}$
Let’s first find out the equilibrium constant${{\text{K}}_{\text{p}}}$. Using the law of mass action for product and reactant we get,
${{\text{K}}_{\text{p}}}\text{ = }\dfrac{\text{p}_{\text{S}{{\text{O}}_{\text{3}}}}^{\text{2}}\text{ }}{\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{\text{2}}\text{ p}_{{{\text{O}}_{\text{2}}}}^{\text{1}}}$
Substitute the values in the equilibrium constant, we have
$\begin{align}
& \text{ }{{\text{K}}_{\text{p}}}\text{ = }\dfrac{{{\left( 0.331 \right)}^{\text{2}}}\text{ }}{{{\left( 0.662 \right)}^{\text{2}}}\text{ }\left( 0.100 \right)} \\
& \Rightarrow {{\text{K}}_{\text{p}}}\text{ = }\dfrac{\left( 0.109 \right)\text{ }}{\left( 0.438 \right)\text{ }\left( 0.100 \right)} \\
& \Rightarrow {{\text{K}}_{\text{p}}}\text{ = }\dfrac{\left( 0.109 \right)\text{ }}{\left( 0.0438 \right)} \\
& \Rightarrow {{\text{K}}_{\text{p}}}\text{ = }\dfrac{\left( 0.109 \right)\text{ }}{\left( 0.0438 \right)} \\
& \Rightarrow {{\text{K}}_{\text{p}}}\text{ = 2}\text{.48 }\simeq \text{ 2}\text{.5 } \\
\end{align}$
Therefore, the equilibrium constant ${{\text{K}}_{\text{p}}}\text{ = 2}\text{.5 }$.
We want to find the $\text{p}_{\text{ }{{\text{O}}_{\text{2}}}}^{'}\text{ }$, when $\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}$
Substitute values in the equation of equilibrium constant ${{\text{K}}_{\text{p}}}$.we have,
$\begin{align}
& \text{ }{{\text{K}}_{\text{p}}}\text{ = }\dfrac{\text{p}_{\text{S}{{\text{O}}_{\text{3}}}}^{\text{2}}\text{ }}{\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{\text{2}}\text{ p}_{{{\text{O}}_{\text{2}}}}^{'}} \\
& \Rightarrow 2.5\text{ = }\dfrac{\left( \text{p}_{\text{S}{{\text{O}}_{\text{3}}}}^{\text{2}} \right)\text{ }}{\left( \text{p}_{\text{S}{{\text{O}}_{3}}}^{\text{2}} \right)\text{ p}_{{{\text{O}}_{\text{2}}}}^{'}}\text{ }\because \text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}\text{ , }{{\text{K}}_{\text{p}}}=2.5 \\
& \Rightarrow 2.5\text{ = }\dfrac{\text{1 }}{\text{ p}_{{{\text{O}}_{\text{2}}}}^{'}} \\
& \Rightarrow \text{p}_{{{\text{O}}_{\text{2}}}}^{'}\text{ = }\dfrac{1}{2.5} \\
& \therefore \text{p}_{{{\text{O}}_{\text{2}}}}^{'}\text{ = 0}\text{.4} \\
\end{align}$
Therefore, the partial pressure of oxygen $\text{p}_{{{\text{O}}_{\text{2}}}}^{'}\text{ }$when $\text{p}_{\text{S}{{\text{O}}_{\text{2}}}}^{{}}\text{ = p}_{\text{S}{{\text{O}}_{3}}}^{{}}$is equalled to$\text{0}\text{.4}$.
Hence, (A) is the correct option.
Note: The equilibrium constant can be written in the terms of activities$\text{ (}{{\text{a}}_{\text{i}}}\text{) }$, molar concentration$\text{ (}{{\text{C}}_{\text{i}}}\text{) }$, or mole fractions $\text{ (}{{\text{X}}_{\text{i}}}\text{) }$of the species involved in the reaction. The equilibrium constant in terms of concentration is written as,
$\begin{align}
& \text{for reaction,} \\
& \text{ aA + bB }\rightleftharpoons \text{ cC + dD} \\
& {{\text{K}}_{\text{p}}}\text{ = }\dfrac{{{\left[ \text{C} \right]}^{\text{c}}}{{\left[ \text{D} \right]}^{\text{d}}}\text{ }}{{{\left[ \text{A} \right]}^{\text{a}}}{{\left[ \text{B} \right]}^{\text{b}}}} \\
\end{align}$
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
