
At ${{25}^{\circ }}C$ benzene and toluene have densities 0.879 and 0.867 g/mL respectively. Assuming that benzene, toluene solutions are ideal, then the equation for the density (e) of solution as: $e=\dfrac{1}{100}\left[ 0.879V + 0.867(100 - V) \right]$, where V is the volume of benzene.
Answer
573.9k+ views
Hint: For solving this question:
-Find the mass of benzene and toluene as density is given using the formula: mass= density $\times $ volume,
- then find the density of the solution.
Complete step by step solution:
We have been provided that the densities of benzene and toluene are 0.879 and 0.867 g/mol,
As benzene and toluene form an ideal solution,
An ideal solution is a mixture in which the molecules of different species are distinguishable, however, unlike the ideal gas, the molecules in an ideal solution exert forces on one another. When those forces are the same for all molecules independent of species then a solution is said to be ideal.
So, the volume of the solution would be:
\[{{V}_{sol}} = {{V}_{ben}} + {{V}_{tol}}\]
Now, we will be calculating the mass as we have been provided with density of benzene and toluene,
For that let the volume of toluene and benzene as ${{V}_{tol}}$ and ${{V}_{ben}}$,
Mass of toluene: $0.867\times {{V}_{tol}}$,
Mass of benzene: $0.879\times {{V}_{ben}}$,
So, the total mass of solution would be: $0.867\times {{V}_{tol}}$ + $0.879\times {{V}_{ben}}$,
Hence, the density of solution would be: total mass/ total volume,
Keeping the values in the above formula: $e = \dfrac{0.867\times {{V}_{tol}} + 0.879\times {{V}_{ben}}}{{{V}_{ben}}+{{V}_{tol}}}$:
Hence, we can conclude that the statement is incorrect.
Note: Note that, there is an another method to determine the density of binary mixture .the method involves the use of mole fraction as:
$\text{ }{{\text{D}}_{\text{mix}}}\text{ = }\dfrac{100}{\left( {{\text{X}}_{\text{1}}}\text{ }\!\!\times\!\!\text{ }{{\text{D}}_{\text{1}}} \right)\text{ + }\left( {{\text{X}}_{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{D}}_{\text{2}}} \right)\text{ }}\text{ }$
Where ,${{\text{X}}_{\text{1}}}$ is the mole fraction of component 1 and ${{\text{X}}_{2}}$ is the mole fraction of second component.
-Find the mass of benzene and toluene as density is given using the formula: mass= density $\times $ volume,
- then find the density of the solution.
Complete step by step solution:
We have been provided that the densities of benzene and toluene are 0.879 and 0.867 g/mol,
As benzene and toluene form an ideal solution,
An ideal solution is a mixture in which the molecules of different species are distinguishable, however, unlike the ideal gas, the molecules in an ideal solution exert forces on one another. When those forces are the same for all molecules independent of species then a solution is said to be ideal.
So, the volume of the solution would be:
\[{{V}_{sol}} = {{V}_{ben}} + {{V}_{tol}}\]
Now, we will be calculating the mass as we have been provided with density of benzene and toluene,
For that let the volume of toluene and benzene as ${{V}_{tol}}$ and ${{V}_{ben}}$,
Mass of toluene: $0.867\times {{V}_{tol}}$,
Mass of benzene: $0.879\times {{V}_{ben}}$,
So, the total mass of solution would be: $0.867\times {{V}_{tol}}$ + $0.879\times {{V}_{ben}}$,
Hence, the density of solution would be: total mass/ total volume,
Keeping the values in the above formula: $e = \dfrac{0.867\times {{V}_{tol}} + 0.879\times {{V}_{ben}}}{{{V}_{ben}}+{{V}_{tol}}}$:
Hence, we can conclude that the statement is incorrect.
Note: Note that, there is an another method to determine the density of binary mixture .the method involves the use of mole fraction as:
$\text{ }{{\text{D}}_{\text{mix}}}\text{ = }\dfrac{100}{\left( {{\text{X}}_{\text{1}}}\text{ }\!\!\times\!\!\text{ }{{\text{D}}_{\text{1}}} \right)\text{ + }\left( {{\text{X}}_{\text{2}}}\text{ }\!\!\times\!\!\text{ }{{\text{D}}_{\text{2}}} \right)\text{ }}\text{ }$
Where ,${{\text{X}}_{\text{1}}}$ is the mole fraction of component 1 and ${{\text{X}}_{2}}$ is the mole fraction of second component.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

