At $20^\circ C$ temperature in horizontal pipe pressure falls 60 KPa per 100 m and water flow in pipe with rate 3 litre per minute, what is approximate radius of pipe $($coefficient of viscosity, $20^\circ C = {10^{ - 3}}Pa)$
(A) $2.52 cm$
(B) $0.38 cm$
(C) $1.23 cm$
(D) $4.63 cm$
Answer
Verified
469.8k+ views
Hint:In given numerical rate of water flow, coefficient of viscosity length of pipe and pressure difference is given at fixed temperature. Using poiseuille’s law and on substituting the values of all these physical quantities we get a radius of pipe.
Formula used:
According to poiseuille’s law, the rate of flow of water is given as
$Q = \dfrac{{\Delta \rho \pi {r^4}}}{{8\eta \ell }}$
Where
$\Delta \rho = $ Pressure difference
r $ = $ Radius of pipe
$\eta = $ Coefficient of viscosity
$\ell = $ Length of pipe
Complete step by step answer:
Given that
Pressure difference $\Delta \rho = 60kPa$
$\Delta \rho = 60 \times {10^{ - 3}}Pa$
Coefficient of viscosity $\eta = {10^{ - 3}}$
Length of pipe $\ell = 100m$
Rate of water flow $Q = \dfrac{{3 \times {{10}^{ - 3}}}}{{60}}$
$Q = 5 \times {10^{ - 5}}{m^3}{s^{ - 1}}$
According to poiseuille’s law, the rate of flow of water is given by
$\Rightarrow Q = \dfrac{{\Delta \rho \pi {r^4}}}{{8\eta \ell }}$
$\Rightarrow {r^4} = \dfrac{{8Q\eta \ell }}{{\Delta \rho \pi }}$ $[\because \pi = 3.14]$
On putting all the values in above expression
$\Rightarrow {r^4} = \dfrac{{8 \times 5 \times {{10}^{ - 5}} \times {{10}^{ - 3}} \times 100}}{{60 \times {{10}^3} \times 3.14}}$
$\Rightarrow {r^4} = \dfrac{{40 \times 100 \times {{10}^{ - 8}}}}{{188.4 \times {{10}^3}}}$
$\Rightarrow {r^4} = \dfrac{{4000}}{{1884}} \times {10^{ - 8}} \times {10^{ - 2}}$
$\Rightarrow {r^4} = 2.12 \times {10^{ - 10}}$
$\Rightarrow {r^2} = \sqrt {2.12 \times {{10}^{ - 10}}} $
$\Rightarrow {r^2} = 1.457 \times {10^{ - 5}}$
$\Rightarrow r = \sqrt {1.457 \times {{10}^{ - 5}}} $
$\Rightarrow r = \sqrt {14.57 \times {{10}^{ - 6}}} $
$\Rightarrow r = 3.187 \times {10^{ - 3}}m$
$\Rightarrow r \approx 3.82 \times {10^{ - 3}}m$
$\Rightarrow r \approx 3.82 \times {10^{ - 1}}cm$
$\therefore r \approx 0.38cm$
Hence, the radius of pipe is $0.38 cm$. So, option B is the correct answer.
Note: Many times students may get confused between dynamic viscosity and kinematic viscosity.Dynamic viscosity is the measurement of the fluid’s internal resistance to flow.Kinematic viscosity if the ratio of dynamic viscosity to density.
Formula used:
According to poiseuille’s law, the rate of flow of water is given as
$Q = \dfrac{{\Delta \rho \pi {r^4}}}{{8\eta \ell }}$
Where
$\Delta \rho = $ Pressure difference
r $ = $ Radius of pipe
$\eta = $ Coefficient of viscosity
$\ell = $ Length of pipe
Complete step by step answer:
Given that
Pressure difference $\Delta \rho = 60kPa$
$\Delta \rho = 60 \times {10^{ - 3}}Pa$
Coefficient of viscosity $\eta = {10^{ - 3}}$
Length of pipe $\ell = 100m$
Rate of water flow $Q = \dfrac{{3 \times {{10}^{ - 3}}}}{{60}}$
$Q = 5 \times {10^{ - 5}}{m^3}{s^{ - 1}}$
According to poiseuille’s law, the rate of flow of water is given by
$\Rightarrow Q = \dfrac{{\Delta \rho \pi {r^4}}}{{8\eta \ell }}$
$\Rightarrow {r^4} = \dfrac{{8Q\eta \ell }}{{\Delta \rho \pi }}$ $[\because \pi = 3.14]$
On putting all the values in above expression
$\Rightarrow {r^4} = \dfrac{{8 \times 5 \times {{10}^{ - 5}} \times {{10}^{ - 3}} \times 100}}{{60 \times {{10}^3} \times 3.14}}$
$\Rightarrow {r^4} = \dfrac{{40 \times 100 \times {{10}^{ - 8}}}}{{188.4 \times {{10}^3}}}$
$\Rightarrow {r^4} = \dfrac{{4000}}{{1884}} \times {10^{ - 8}} \times {10^{ - 2}}$
$\Rightarrow {r^4} = 2.12 \times {10^{ - 10}}$
$\Rightarrow {r^2} = \sqrt {2.12 \times {{10}^{ - 10}}} $
$\Rightarrow {r^2} = 1.457 \times {10^{ - 5}}$
$\Rightarrow r = \sqrt {1.457 \times {{10}^{ - 5}}} $
$\Rightarrow r = \sqrt {14.57 \times {{10}^{ - 6}}} $
$\Rightarrow r = 3.187 \times {10^{ - 3}}m$
$\Rightarrow r \approx 3.82 \times {10^{ - 3}}m$
$\Rightarrow r \approx 3.82 \times {10^{ - 1}}cm$
$\therefore r \approx 0.38cm$
Hence, the radius of pipe is $0.38 cm$. So, option B is the correct answer.
Note: Many times students may get confused between dynamic viscosity and kinematic viscosity.Dynamic viscosity is the measurement of the fluid’s internal resistance to flow.Kinematic viscosity if the ratio of dynamic viscosity to density.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE
The members of the Municipal Corporation are elected class 11 social science CBSE
What is spore formation class 11 biology CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE