Answer
Verified
449.1k+ views
Hint: Hybridization is a concept of valence bond theory. When orbitals of different energy mix and pool their energy to form new orbitals of similar shape, size and energy, then this phenomenon is known as hybridization.
Complete step by step answer:
Let’s look at the solution of the question.
> To answer this question first we will calculate the hybridization of carbon atoms in $ C{{O}_{2}}$ molecule.
The formula for hybridization is given by:
Hybridization$=\dfrac{1}{2}(V+M+A-C)$…….equation 1
Where, V= number of valence electron on the central atom
M= number of monovalent atom
A= anionic charge present on the molecule
C= cationic charge present on the molecule
Now, in a $C{{O}_{2}}$ molecule
V=4, M=0, A=0, C=0
On putting the values in equation 1, we get.
Hybridization=2
Hence, the hybridization of $C{{O}_{2}}$ molecule is sp. So, the given assertion statement is false.
> Now, we know that dipole moment is dependent on the net bond moment in a molecule. In $C{{O}_{2}}$ molecules the bond moment of both the C=O bond are equal and aligned opposite to each other. So, they cancel their effect and the net dipole moment of the $C{{O}_{2}}$ molecule is 0.
Hence, the reason is correct.
So, the answer of the given question is option (C).
Note: The geometry and shape of the molecule depends on the hybridization of the molecule. The shapes of sp, $s{{p}^{2}}$ and $s{{p}^{3}}$ are linear, triangular planar and tetrahedral respectively. Carbon is found in these hybridizations only.
Complete step by step answer:
Let’s look at the solution of the question.
> To answer this question first we will calculate the hybridization of carbon atoms in $ C{{O}_{2}}$ molecule.
The formula for hybridization is given by:
Hybridization$=\dfrac{1}{2}(V+M+A-C)$…….equation 1
Where, V= number of valence electron on the central atom
M= number of monovalent atom
A= anionic charge present on the molecule
C= cationic charge present on the molecule
Now, in a $C{{O}_{2}}$ molecule
V=4, M=0, A=0, C=0
On putting the values in equation 1, we get.
Hybridization=2
Hence, the hybridization of $C{{O}_{2}}$ molecule is sp. So, the given assertion statement is false.
> Now, we know that dipole moment is dependent on the net bond moment in a molecule. In $C{{O}_{2}}$ molecules the bond moment of both the C=O bond are equal and aligned opposite to each other. So, they cancel their effect and the net dipole moment of the $C{{O}_{2}}$ molecule is 0.
Hence, the reason is correct.
So, the answer of the given question is option (C).
Note: The geometry and shape of the molecule depends on the hybridization of the molecule. The shapes of sp, $s{{p}^{2}}$ and $s{{p}^{3}}$ are linear, triangular planar and tetrahedral respectively. Carbon is found in these hybridizations only.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE