
Assertion: In $C{{O}_{2}}$ molecule, C-atom undergoes $s{{p}^{2}}$ hybridization.
Reason: $C{{O}_{2}}$ molecule has net dipole moment zero.
(A) Both assertion and reason are correct and reason is the correct explanation of assertion.
(B) Both assertion and reason are correct but reason is not the correct explanation of assertion.
(C) Assertion is incorrect but reason is correct.
(D) Both assertion and reason are incorrect.
Answer
483.9k+ views
Hint: Hybridization is a concept of valence bond theory. When orbitals of different energy mix and pool their energy to form new orbitals of similar shape, size and energy, then this phenomenon is known as hybridization.
Complete step by step answer:
Let’s look at the solution of the question.
> To answer this question first we will calculate the hybridization of carbon atoms in $ C{{O}_{2}}$ molecule.
The formula for hybridization is given by:
Hybridization$=\dfrac{1}{2}(V+M+A-C)$…….equation 1
Where, V= number of valence electron on the central atom
M= number of monovalent atom
A= anionic charge present on the molecule
C= cationic charge present on the molecule
Now, in a $C{{O}_{2}}$ molecule
V=4, M=0, A=0, C=0
On putting the values in equation 1, we get.
Hybridization=2
Hence, the hybridization of $C{{O}_{2}}$ molecule is sp. So, the given assertion statement is false.
> Now, we know that dipole moment is dependent on the net bond moment in a molecule. In $C{{O}_{2}}$ molecules the bond moment of both the C=O bond are equal and aligned opposite to each other. So, they cancel their effect and the net dipole moment of the $C{{O}_{2}}$ molecule is 0.
Hence, the reason is correct.
So, the answer of the given question is option (C).
Note: The geometry and shape of the molecule depends on the hybridization of the molecule. The shapes of sp, $s{{p}^{2}}$ and $s{{p}^{3}}$ are linear, triangular planar and tetrahedral respectively. Carbon is found in these hybridizations only.
Complete step by step answer:
Let’s look at the solution of the question.
> To answer this question first we will calculate the hybridization of carbon atoms in $ C{{O}_{2}}$ molecule.
The formula for hybridization is given by:
Hybridization$=\dfrac{1}{2}(V+M+A-C)$…….equation 1
Where, V= number of valence electron on the central atom
M= number of monovalent atom
A= anionic charge present on the molecule
C= cationic charge present on the molecule
Now, in a $C{{O}_{2}}$ molecule
V=4, M=0, A=0, C=0
On putting the values in equation 1, we get.
Hybridization=2
Hence, the hybridization of $C{{O}_{2}}$ molecule is sp. So, the given assertion statement is false.
> Now, we know that dipole moment is dependent on the net bond moment in a molecule. In $C{{O}_{2}}$ molecules the bond moment of both the C=O bond are equal and aligned opposite to each other. So, they cancel their effect and the net dipole moment of the $C{{O}_{2}}$ molecule is 0.
Hence, the reason is correct.
So, the answer of the given question is option (C).
Note: The geometry and shape of the molecule depends on the hybridization of the molecule. The shapes of sp, $s{{p}^{2}}$ and $s{{p}^{3}}$ are linear, triangular planar and tetrahedral respectively. Carbon is found in these hybridizations only.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

The correct order of melting point of 14th group elements class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE
