Answer
Verified
427.8k+ views
Hint:
In this question the values of the function at $1,$ $ - 1$ and $0$ are given and the value of the function at this point are greater than and less than $0$ but not equal to zero. Therefore, the roots of the function lies between $1,$ $ - 1$ and $0$ . Now, we will check whether the reason is correct or incorrect.
Complete step by step solution:
The given equation is $p{x^2} + qx + r$ and its roots are $\alpha ,\,\beta $ . Also given, $p + q + r < 0,$$p - q + r < 0$ and $r > 0$ .
If we put $x = 1$ in the equation $f\left( x \right) = p{x^2} + qx + r$ then we will get
$
\Rightarrow f\left( 1 \right) = p{\left( 1 \right)^2} + q\left( 1 \right) + r \\
\Rightarrow f\left( 1 \right) = p + q + r \\
$
It is given in the question that $p + q + r$ is less than $1$ . Therefore, we got $f(1) < 0$ .
Now, put $x = 0$ in the equation $f\left( x \right)$ then we will get
$
\Rightarrow f\left( 0 \right) = p{\left( 0 \right)^2} + q\left( 0 \right) + r \\
\Rightarrow f\left( 0 \right) = r \\
$
It is given in the question that $r$ is greater than $1$ . Therefore, we got $f(0) > 0$ .
Now, put $x = - 1$ in the equation $f\left( x \right)$ then we will get
$
\Rightarrow f\left( { - 1} \right) = p{\left( { - 1} \right)^2} + q\left( { - 1} \right) + r \\
\Rightarrow f\left( { - 1} \right) = p - q + r \\
$
It is given in the question that $p - q + r$ is less than $1$ . Therefore, we got $f( - 1) < 0$ .
From the above observations we can say that If $\alpha ,\,\beta $ are the roots of the equation $p{x^2} + qx + r = 0$ then one of the root lies between $\left( { - 1,0} \right)$ and the other root lies between $\left( {0,1} \right)$ .
Therefore, we can write $\left[ \alpha \right] + \left[ \beta \right] = - 1$ where $\left[ . \right]$ is the greatest integer function and this function gives the greatest integer less than the given value. Example: If we have $\left[ {1.45} \right]$ then it will give value $1$ .
And also from the observation we can write $f\left( 0 \right).f\left( { - 1} \right) < 0$ . Therefore, we can say that at least one root lies between$\left( { - 1,0} \right)$ .
Therefore, both Assertion and Reason are correct and Reason is the correct explanation for Assertion
Hence, option (A) is the correct option.
Note:
In this question we should get the idea by looking at the question that the value of the equation at some points is less than zero and at some points it is greater than zero and between them we will get the roots of the equation. And we should have the knowledge of the greatest integer function.
In this question the values of the function at $1,$ $ - 1$ and $0$ are given and the value of the function at this point are greater than and less than $0$ but not equal to zero. Therefore, the roots of the function lies between $1,$ $ - 1$ and $0$ . Now, we will check whether the reason is correct or incorrect.
Complete step by step solution:
The given equation is $p{x^2} + qx + r$ and its roots are $\alpha ,\,\beta $ . Also given, $p + q + r < 0,$$p - q + r < 0$ and $r > 0$ .
If we put $x = 1$ in the equation $f\left( x \right) = p{x^2} + qx + r$ then we will get
$
\Rightarrow f\left( 1 \right) = p{\left( 1 \right)^2} + q\left( 1 \right) + r \\
\Rightarrow f\left( 1 \right) = p + q + r \\
$
It is given in the question that $p + q + r$ is less than $1$ . Therefore, we got $f(1) < 0$ .
Now, put $x = 0$ in the equation $f\left( x \right)$ then we will get
$
\Rightarrow f\left( 0 \right) = p{\left( 0 \right)^2} + q\left( 0 \right) + r \\
\Rightarrow f\left( 0 \right) = r \\
$
It is given in the question that $r$ is greater than $1$ . Therefore, we got $f(0) > 0$ .
Now, put $x = - 1$ in the equation $f\left( x \right)$ then we will get
$
\Rightarrow f\left( { - 1} \right) = p{\left( { - 1} \right)^2} + q\left( { - 1} \right) + r \\
\Rightarrow f\left( { - 1} \right) = p - q + r \\
$
It is given in the question that $p - q + r$ is less than $1$ . Therefore, we got $f( - 1) < 0$ .
From the above observations we can say that If $\alpha ,\,\beta $ are the roots of the equation $p{x^2} + qx + r = 0$ then one of the root lies between $\left( { - 1,0} \right)$ and the other root lies between $\left( {0,1} \right)$ .
Therefore, we can write $\left[ \alpha \right] + \left[ \beta \right] = - 1$ where $\left[ . \right]$ is the greatest integer function and this function gives the greatest integer less than the given value. Example: If we have $\left[ {1.45} \right]$ then it will give value $1$ .
And also from the observation we can write $f\left( 0 \right).f\left( { - 1} \right) < 0$ . Therefore, we can say that at least one root lies between$\left( { - 1,0} \right)$ .
Therefore, both Assertion and Reason are correct and Reason is the correct explanation for Assertion
Hence, option (A) is the correct option.
Note:
In this question we should get the idea by looking at the question that the value of the equation at some points is less than zero and at some points it is greater than zero and between them we will get the roots of the equation. And we should have the knowledge of the greatest integer function.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE