
Area of a rectangle having vertices A, B, C and D with position vectors
\[ - \widehat i + \dfrac{1}{2}\widehat j + 4\widehat {k,}\widehat i + \dfrac{1}{2}\widehat j + 4\widehat {k,}\widehat i - \dfrac{1}{2}\widehat j + 4\widehat {k,}\] and \[ - \widehat i - \dfrac{1}{2}\widehat j + 4\widehat k\] respectively is
(A) $\dfrac{1}{2}$
(B) $1$
(C) $2$
(D) $4$
Answer
577.2k+ views
Hint: This is a vector algebra based problem. We have been given with the position vectors of all four vertices of a rectangle ABCD. Here, we may involve coordinate geometry methods to find the distance between points and hence to find the area of the rectangle.
Complete step-by-step answer:
First we will find the coordinates of all four vertices with the help of their position vectors.
For vertex A,
Position vector is $ - \widehat i + \dfrac{1}{2}\widehat j + 4\widehat k$. So its coordinate will be $\left( { - 1,\dfrac{1}{2},4} \right)$.
For vertex B,
Position vector is $\widehat i + \dfrac{1}{2}\widehat j + 4\widehat k$. So its coordinate will be $\left( {1,\dfrac{1}{2},4} \right)$.
For vertex C,
Position vector is $\widehat i - \dfrac{1}{2}\widehat j + 4\widehat k$.So its coordinate will be$\left( {1, - \dfrac{1}{2},4} \right)$.
For vertex D,
Position vector is $ - \widehat i - \dfrac{1}{2}\widehat j + 4\widehat k$.So its coordinate will be$\left( { - 1, - \dfrac{1}{2},4} \right)$.
Distance formula between points $({x_1},{y_1},{z_1})$ and \[({x_2},{y_2},{z_2})\] is $\sqrt {{{({x_1} - {x_2})}^2} + {{({y_1} - {y_2})}^2} + {{({z_1} - {z_2})}^2}} $
Now, we can find the length of sides of the rectangle ABCD , let us suppose AB and BC.
AB = Distance between point A and point B
=$\sqrt {{{(1 - ( - 1))}^2} + {{(\dfrac{1}{2} - \dfrac{1}{2})}^2} + {{(4 - 4)}^2}} $
=$\sqrt {{2^2}} $
=$2$
Similarly,
BC= Distance between point B and point C
=$\sqrt {{{(1 - 1)}^2} + {{(\dfrac{1}{2} - ( - \dfrac{1}{2}))}^2} + {{(4 - 4)}^2}} $
=$\sqrt {{1^2}} $
=$1$
Area of rectangle = length of AB $ \times $ length of BC
= $2 \times 1$
=$2$
Thus option D is correct.
Note: Vector is an object which has magnitude and direction. This problem is a good example of a geometry related question where coordinates of the points are playing an important role for the computation of other relevant terms of some given shape. Here we have used a distance formula for finding the length and breadth and hence area of the rectangle.
Complete step-by-step answer:
First we will find the coordinates of all four vertices with the help of their position vectors.
For vertex A,
Position vector is $ - \widehat i + \dfrac{1}{2}\widehat j + 4\widehat k$. So its coordinate will be $\left( { - 1,\dfrac{1}{2},4} \right)$.
For vertex B,
Position vector is $\widehat i + \dfrac{1}{2}\widehat j + 4\widehat k$. So its coordinate will be $\left( {1,\dfrac{1}{2},4} \right)$.
For vertex C,
Position vector is $\widehat i - \dfrac{1}{2}\widehat j + 4\widehat k$.So its coordinate will be$\left( {1, - \dfrac{1}{2},4} \right)$.
For vertex D,
Position vector is $ - \widehat i - \dfrac{1}{2}\widehat j + 4\widehat k$.So its coordinate will be$\left( { - 1, - \dfrac{1}{2},4} \right)$.
Distance formula between points $({x_1},{y_1},{z_1})$ and \[({x_2},{y_2},{z_2})\] is $\sqrt {{{({x_1} - {x_2})}^2} + {{({y_1} - {y_2})}^2} + {{({z_1} - {z_2})}^2}} $
Now, we can find the length of sides of the rectangle ABCD , let us suppose AB and BC.
AB = Distance between point A and point B
=$\sqrt {{{(1 - ( - 1))}^2} + {{(\dfrac{1}{2} - \dfrac{1}{2})}^2} + {{(4 - 4)}^2}} $
=$\sqrt {{2^2}} $
=$2$
Similarly,
BC= Distance between point B and point C
=$\sqrt {{{(1 - 1)}^2} + {{(\dfrac{1}{2} - ( - \dfrac{1}{2}))}^2} + {{(4 - 4)}^2}} $
=$\sqrt {{1^2}} $
=$1$
Area of rectangle = length of AB $ \times $ length of BC
= $2 \times 1$
=$2$
Thus option D is correct.
Note: Vector is an object which has magnitude and direction. This problem is a good example of a geometry related question where coordinates of the points are playing an important role for the computation of other relevant terms of some given shape. Here we have used a distance formula for finding the length and breadth and hence area of the rectangle.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

