Answer
Verified
449.4k+ views
Hint: The conductance of a solution of different electrolytes varies with their concentration. To compare the conductance of different electrolytes. It is convenient to define a quantity which is called equivalent conductance.
Complete answer:
- The equivalent conductance can be defined as the net conductance of every ion that is produced from one gram equivalent of a given substance.
- If we consider two large parallel electrodes set 1 cm apart and the whole of the solution containing 1g equivalent of an electrolyte is placed between the electrodes. If V is the volume of the solution containing 1 g equivalent of an electrolyte. The equivalent conductivity is given as:
\[\lambda =kV\]
Where k is the specific conductance,
If C is concentration of the solution in $\left( g\text{ }equi\text{ }c{{m}^{-3}} \right)$, then we can write the relation of Volume to concentration, that is $volume=\dfrac{1}{concentration}$.
Hence, Then the equation is,
\[\lambda =k\times \dfrac{1}{C}\]
- $\lambda $ is never determined directly, but is calculated from its specific conductance and concentration.
- Specific conductance k is the reciprocal of specific resistance $\rho $ (it is the resistance offered by a material 1cm in length and having an area of cross section $1c{{m}^{2}}$). Specific resistance has unit ohm cm, specific conductance has unit of$oh{{m}^{-1}}\text{ }c{{m}^{-1}}$
-Hence we can see that the unit of equivalent conductance is found to be:
\[\lambda =k\times \dfrac{1}{C}\]
\[\begin{align}
& \dfrac{oh{{m}^{-1}}c{{m}^{-1}}}{g\text{ equiv c}{{\text{m}}^{3}}} \\
& =oh{{m}^{-1}}\text{ }g\text{ equi}{{\text{v}}^{-1}}\text{ c}{{\text{m}}^{2}}\text{ } \\
\end{align}\]
Or we can write it as $oh{{m}^{-1}}\text{ c}{{\text{m}}^{2}}\text{ g equi}{{\text{v}}^{-1}}$
- Hence we can conclude that the option (d) is the correct answer that is the equivalent conductivity has the unit $oh{{m}^{-1}}\text{ c}{{\text{m}}^{2}}\text{ g equi}{{\text{v}}^{-1}}$.
Additional information:
- Experimental measurement of a solution is reciprocal of the resistance, therefore, the experimental determination of the conductance of a solution involves the measurement of its resistance.
- We have seen that conductivity k is the reciprocal of resistivity, that is $\rho $that is:
\[\begin{align}
& k=\dfrac{1}{\rho } \\
& and\text{ }\rho \text{=R}\dfrac{a}{l} \\
& k=\dfrac{1}{R}\left( \dfrac{1}{a} \right) \\
& k=G\left( \dfrac{l}{a} \right) \\
\end{align}\]
Where G is the conductance of the cell, l is the distance of separation of two electrodes, and $\dfrac{l}{a}$ cell constant.
Note:
- We should not get confused in terms of specific and equivalent conductance. Specific conductance is denoted by symbol k and equivalent conductance is denoted by symbol $\lambda $
- We can see that$\lambda $ is never determined directly, but always calculated from its specific conductivity and concentration.
Complete answer:
- The equivalent conductance can be defined as the net conductance of every ion that is produced from one gram equivalent of a given substance.
- If we consider two large parallel electrodes set 1 cm apart and the whole of the solution containing 1g equivalent of an electrolyte is placed between the electrodes. If V is the volume of the solution containing 1 g equivalent of an electrolyte. The equivalent conductivity is given as:
\[\lambda =kV\]
Where k is the specific conductance,
If C is concentration of the solution in $\left( g\text{ }equi\text{ }c{{m}^{-3}} \right)$, then we can write the relation of Volume to concentration, that is $volume=\dfrac{1}{concentration}$.
Hence, Then the equation is,
\[\lambda =k\times \dfrac{1}{C}\]
- $\lambda $ is never determined directly, but is calculated from its specific conductance and concentration.
- Specific conductance k is the reciprocal of specific resistance $\rho $ (it is the resistance offered by a material 1cm in length and having an area of cross section $1c{{m}^{2}}$). Specific resistance has unit ohm cm, specific conductance has unit of$oh{{m}^{-1}}\text{ }c{{m}^{-1}}$
-Hence we can see that the unit of equivalent conductance is found to be:
\[\lambda =k\times \dfrac{1}{C}\]
\[\begin{align}
& \dfrac{oh{{m}^{-1}}c{{m}^{-1}}}{g\text{ equiv c}{{\text{m}}^{3}}} \\
& =oh{{m}^{-1}}\text{ }g\text{ equi}{{\text{v}}^{-1}}\text{ c}{{\text{m}}^{2}}\text{ } \\
\end{align}\]
Or we can write it as $oh{{m}^{-1}}\text{ c}{{\text{m}}^{2}}\text{ g equi}{{\text{v}}^{-1}}$
- Hence we can conclude that the option (d) is the correct answer that is the equivalent conductivity has the unit $oh{{m}^{-1}}\text{ c}{{\text{m}}^{2}}\text{ g equi}{{\text{v}}^{-1}}$.
Additional information:
- Experimental measurement of a solution is reciprocal of the resistance, therefore, the experimental determination of the conductance of a solution involves the measurement of its resistance.
- We have seen that conductivity k is the reciprocal of resistivity, that is $\rho $that is:
\[\begin{align}
& k=\dfrac{1}{\rho } \\
& and\text{ }\rho \text{=R}\dfrac{a}{l} \\
& k=\dfrac{1}{R}\left( \dfrac{1}{a} \right) \\
& k=G\left( \dfrac{l}{a} \right) \\
\end{align}\]
Where G is the conductance of the cell, l is the distance of separation of two electrodes, and $\dfrac{l}{a}$ cell constant.
Note:
- We should not get confused in terms of specific and equivalent conductance. Specific conductance is denoted by symbol k and equivalent conductance is denoted by symbol $\lambda $
- We can see that$\lambda $ is never determined directly, but always calculated from its specific conductivity and concentration.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell