Answer
Verified
426.6k+ views
Hint: Equilibrium constant is denoted by the symbol $\left( {{k}_{c}} \right)$. It is found that the expression for equilibrium constant $\left( {{k}_{c}} \right)$ is given by the equation: ${{k}_{c}}=\dfrac{concentration\text{ }of\text{ }product}{concentration\text{ }of\text{ }reactant}$
Complete Step by step solution:
- Equilibrium constant helps us to determine whether the reaction will have a higher concentration of reactants or products.
- We are being provided with the equation:
\[C\left( s \right)+{{O}_{2\left( g \right)}}\rightleftharpoons C{{O}_{2}}\left( g \right)\]
- As we know that equilibrium constant $\left( {{k}_{c}} \right)$ is given by the equation
${{k}_{c}}=\dfrac{concentration\text{ }of\text{ }product}{concentration\text{ }of\text{ }reactant}$
So, we can write equilibrium constant for the given reaction as:
\[{{k}_{c}}=\dfrac{\left[ C{{O}_{2}} \right]}{\left[ C \right]\left[ {{O}_{2}} \right]}\]
As we know that the unit of concentration is mol/litre. Now, putting the value of units in the above formula we get:
\[\begin{align}
& {{k}_{c}}=\dfrac{mol\text{ }li{{t}^{-1}}}{\left( mol\text{ }li{{t}^{-1}} \right)\left( mol\text{ }li{{t}^{-1}} \right)} \\
& \implies\dfrac{1}{mol\text{ }li{{t}^{-1}}} \\
& \implies\left( \dfrac{mo{{l}^{-1}}}{li{{t}^{-1}}} \right) \\
& \implies{{\left( \dfrac{mol}{lit} \right)}^{-1}} \\
\end{align}\]
- Hence, we can conclude that the correct option is (b) that is the units of equilibrium constant $\left( {{k}_{c}} \right)$ for the given reaction is ${{\left( mol/lit \right)}^{-1}}$.
Additional information:
- It is also found that knowledge of equilibrium constant is necessary for understanding various biochemical processes like acid-base homeostasis and oxygen transport by haemoglobin in blood. At equilibrium, various known equilibrium constant values can be used to determine the composition of the system.
- As we know that the equilibrium constant can be used to predict the extent of reaction, direction of reaction.
Note: - It is found that the equilibrium constant $\left( {{k}_{c}} \right)$ depends upon temperature. In case of exothermic reactions increasing the temperature will reduce , and in endothermic reactions increasing the temperature will increase $\left( {{k}_{c}} \right)$.
- And change in concentration, catalyst, pressure etc. have no effect on equilibrium constant.
Complete Step by step solution:
- Equilibrium constant helps us to determine whether the reaction will have a higher concentration of reactants or products.
- We are being provided with the equation:
\[C\left( s \right)+{{O}_{2\left( g \right)}}\rightleftharpoons C{{O}_{2}}\left( g \right)\]
- As we know that equilibrium constant $\left( {{k}_{c}} \right)$ is given by the equation
${{k}_{c}}=\dfrac{concentration\text{ }of\text{ }product}{concentration\text{ }of\text{ }reactant}$
So, we can write equilibrium constant for the given reaction as:
\[{{k}_{c}}=\dfrac{\left[ C{{O}_{2}} \right]}{\left[ C \right]\left[ {{O}_{2}} \right]}\]
As we know that the unit of concentration is mol/litre. Now, putting the value of units in the above formula we get:
\[\begin{align}
& {{k}_{c}}=\dfrac{mol\text{ }li{{t}^{-1}}}{\left( mol\text{ }li{{t}^{-1}} \right)\left( mol\text{ }li{{t}^{-1}} \right)} \\
& \implies\dfrac{1}{mol\text{ }li{{t}^{-1}}} \\
& \implies\left( \dfrac{mo{{l}^{-1}}}{li{{t}^{-1}}} \right) \\
& \implies{{\left( \dfrac{mol}{lit} \right)}^{-1}} \\
\end{align}\]
- Hence, we can conclude that the correct option is (b) that is the units of equilibrium constant $\left( {{k}_{c}} \right)$ for the given reaction is ${{\left( mol/lit \right)}^{-1}}$.
Additional information:
- It is also found that knowledge of equilibrium constant is necessary for understanding various biochemical processes like acid-base homeostasis and oxygen transport by haemoglobin in blood. At equilibrium, various known equilibrium constant values can be used to determine the composition of the system.
- As we know that the equilibrium constant can be used to predict the extent of reaction, direction of reaction.
Note: - It is found that the equilibrium constant $\left( {{k}_{c}} \right)$ depends upon temperature. In case of exothermic reactions increasing the temperature will reduce , and in endothermic reactions increasing the temperature will increase $\left( {{k}_{c}} \right)$.
- And change in concentration, catalyst, pressure etc. have no effect on equilibrium constant.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths