Answer
Verified
465.9k+ views
Hint: In an incidence matrix , the rows represent the vertices and the columns represent the edges.To fill in the incidence matrix , we need look at the name of the vertice in the row and the name of the edge in the column . If a vertex is connected by an edge we write 1 in the corresponding place .
Complete step-by-step answer:
Step 1:
A vertex is said to be incident to an edge if the edge is connected to the vertex
Let's look at an example
The graph below has five vertices and six edges
In an incidence matrix , the rows represent the vertices and the columns represent the edges.
To fill in the incidence matrix , we need to look at the name of the vertice in the row and the name of the edge in the column . If a vertex is connected by an edge we write 1 in the corresponding place .
We can see that the edge ${e_1}$is incident with vertice ${v_1}$. So we write 1 in the corresponding place.
Same way we can fill all the places.
$\begin{gathered}
\begin{array}{*{20}{c}}
{}&{{\text{ }}{e_1}}&{{e_2}}&{{e_3}{\text{ }}{e_4}}
\end{array}{\text{ }}{e_5}{\text{ }}{e_6} \\
\begin{array}{*{20}{c}}
{{{\text{v}}_{\text{1}}}} \\
{{{\text{v}}_{\text{2}}}} \\
{{{\text{v}}_{\text{3}}}} \\
\begin{gathered}
{{\text{v}}_{\text{4}}} \\
{{\text{v}}_{\text{5}}} \\
\end{gathered}
\end{array}{\text{ }}\left[ \begin{gathered}
\begin{array}{*{20}{c}}
{\text{1}}&{\text{0}}&{\text{0}}&{\text{1}} \\
{\text{1}}&{\text{1}}&{\text{0}}&{\text{0}} \\
{\text{0}}&{\text{0}}&{\text{0}}&{\text{0}} \\
{\text{0}}&{\text{0}}&{\text{1}}&{\text{1}}
\end{array}{\text{ }}\begin{array}{*{20}{c}}
{\text{0}} \\
{\text{1}} \\
{\text{1}} \\
{\text{0}}
\end{array}{\text{ }}\begin{array}{*{20}{c}}
{\text{0}} \\
{\text{0}} \\
{\text{1}} \\
{\text{1}}
\end{array} \\
\begin{array}{*{20}{c}}
{\text{0}}&{\text{1}}&{{\text{ 1}}}&{\text{0}}
\end{array}{\text{ }}\begin{array}{*{20}{c}}
{\text{0}}&{\text{0}}
\end{array} \\
\end{gathered} \right]{\text{ }} \\
\end{gathered} $
From this we can see that the dimensions of the incidence matrix is given by number of edges * number of vertices
The correct option is B.
Note:
The determinant of the incidence matrix of a closed loop is zero.
The rank of incidence matrix of a connected graph is (n–1).
Complete step-by-step answer:
Step 1:
A vertex is said to be incident to an edge if the edge is connected to the vertex
Let's look at an example
The graph below has five vertices and six edges
In an incidence matrix , the rows represent the vertices and the columns represent the edges.
To fill in the incidence matrix , we need to look at the name of the vertice in the row and the name of the edge in the column . If a vertex is connected by an edge we write 1 in the corresponding place .
We can see that the edge ${e_1}$is incident with vertice ${v_1}$. So we write 1 in the corresponding place.
Same way we can fill all the places.
$\begin{gathered}
\begin{array}{*{20}{c}}
{}&{{\text{ }}{e_1}}&{{e_2}}&{{e_3}{\text{ }}{e_4}}
\end{array}{\text{ }}{e_5}{\text{ }}{e_6} \\
\begin{array}{*{20}{c}}
{{{\text{v}}_{\text{1}}}} \\
{{{\text{v}}_{\text{2}}}} \\
{{{\text{v}}_{\text{3}}}} \\
\begin{gathered}
{{\text{v}}_{\text{4}}} \\
{{\text{v}}_{\text{5}}} \\
\end{gathered}
\end{array}{\text{ }}\left[ \begin{gathered}
\begin{array}{*{20}{c}}
{\text{1}}&{\text{0}}&{\text{0}}&{\text{1}} \\
{\text{1}}&{\text{1}}&{\text{0}}&{\text{0}} \\
{\text{0}}&{\text{0}}&{\text{0}}&{\text{0}} \\
{\text{0}}&{\text{0}}&{\text{1}}&{\text{1}}
\end{array}{\text{ }}\begin{array}{*{20}{c}}
{\text{0}} \\
{\text{1}} \\
{\text{1}} \\
{\text{0}}
\end{array}{\text{ }}\begin{array}{*{20}{c}}
{\text{0}} \\
{\text{0}} \\
{\text{1}} \\
{\text{1}}
\end{array} \\
\begin{array}{*{20}{c}}
{\text{0}}&{\text{1}}&{{\text{ 1}}}&{\text{0}}
\end{array}{\text{ }}\begin{array}{*{20}{c}}
{\text{0}}&{\text{0}}
\end{array} \\
\end{gathered} \right]{\text{ }} \\
\end{gathered} $
From this we can see that the dimensions of the incidence matrix is given by number of edges * number of vertices
The correct option is B.
Note:
The determinant of the incidence matrix of a closed loop is zero.
The rank of incidence matrix of a connected graph is (n–1).
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE