Answer

Verified

340.2k+ views

**Hint:**The given expression is written in the formula for the ratio test. The determination of the expression whether it is convergent, divergent or inconclusive is conditional and is based on the value of the limit we will get on solving the ratio test equation.

**Complete step-by-step answer:**

According to the question, we have to check whether the expression is convergent or divergent. Before moving on with the solution, we will first try to understand the question.

The given question can also be written as:

\[\sum\limits_{n=1}^{\infty }{\dfrac{{{3}^{n}}{{(n!)}^{2}}}{(2n)!}}\]

So, the question says how will the expression respond when the value of \[n\] increases, that is when the value of \[n\] approaches infinity. For this, we will be using ratio test, which can be stated as follows:

For an expression in the form \[\sum\limits_{n=1}^{\infty }{{{a}_{n}}}\] where the value of \[n\] approaches infinity then limiting the value of \[n\] as \[n \to \infty \] using the formula : \[\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|=L\]

And if \[L<1\], then the series converges

for \[L>1\], the series diverges

and when \[L=1\], then it is inconclusive or cannot say how it will respond.

We can also see factorials in our question. So, factorials are expressed with a (!) sign.

For example - \[a!=a\times (a-1)\times (a-2)...\]

Now, we are ready to start solving the question.

The expression we have is \[\sum\limits_{n=1}^{\infty }{\dfrac{{{3}^{n}}{{(n!)}^{2}}}{(2n)!}}\], writing this expression in the formula for ratio test \[\left( \displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|=L \right)\], we have

First, we will write the value for \[{{a}_{n+1}}\] and \[{{a}_{n}}\],

\[{{a}_{n+1}}=\dfrac{{{3}^{n+1}}{{((n+1)!)}^{2}}}{(2(n+1))!}\] and \[{{a}_{n}}=\dfrac{{{3}^{n}}{{(n!)}^{2}}}{(2n)!}\]

Substituting in the expression of ratio test, we have

\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{\dfrac{{{3}^{n+1}}{{((n+1)!)}^{2}}}{(2(n+1))!}}{\dfrac{{{3}^{n}}{{(n!)}^{2}}}{(2n)!}} \right|=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{3}^{n+1}}{{((n+1)!)}^{2}}}{(2(n+1))!}\times \dfrac{(2n)!}{{{3}^{n}}{{(n!)}^{2}}} \right|\]

\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{3}^{n}}.3{{((n+1)!)}^{2}}}{(2n+2))!}\times \dfrac{(2n)!}{{{3}^{n}}{{(n!)}^{2}}} \right|\]

Now we open up the factorials to cancel the similar terms,

\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{3{{((n+1)(n!))}^{2}}}{(2n+2)(2n+1)(2n)!}\times \dfrac{(2n)!}{{{(n!)}^{2}}} \right|\]

\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{3{{(n+1)}^{2}}{{(n!)}^{2}}}{(2n+2)(2n+1)}\times \dfrac{1}{{{(n!)}^{2}}} \right|\]

\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{3{{(n+1)}^{2}}}{(2(n+1))(2n+1)}\times \dfrac{1}{1} \right|\]

\[\Rightarrow \dfrac{3}{2}\displaystyle \lim_{n \to \infty }\left| \dfrac{{{(n+1)}^{2}}}{(n+1)(2n+1)} \right|=\dfrac{3}{2}\displaystyle \lim_{n \to \infty }\left| \dfrac{(n+1)}{(2n+1)} \right|\]

Multiplying and dividing by \[1/n\], we get

\[\Rightarrow \dfrac{3}{2}\displaystyle \lim_{n \to \infty }\left| \dfrac{(n+1)}{(2n+1)}\times \dfrac{1/n}{1/n} \right|=\dfrac{3}{2}\displaystyle \lim_{n \to \infty }\left| \dfrac{(1+(1/n))}{(2+(1/n))} \right|\]

\[\Rightarrow \dfrac{3}{2}\displaystyle \lim_{n \to \infty }\left| \dfrac{(1+(1/n))}{(2+(1/n))} \right|=\dfrac{3}{2}\left| \dfrac{(1+(0)}{(2+(0))} \right|\]

\[\Rightarrow \dfrac{3}{2}\left( \dfrac{1}{2} \right)=\dfrac{3}{4}\]

which is less than 1 as \[\left( \dfrac{3}{4}<1 \right)\].

According to the ratio test, if the value of the limit is less than 1 then, the expression is convergent.

Therefore, the expression is convergent.

**Note:**Apply the factorial expansion correctly else extra terms will add to the complexity of the expression. Expand the factorial in such a way that similar factorials get cancelled. Recall the conditions in the ratio test which determine whether the expression is convergent or divergent or none.

Recently Updated Pages

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE

Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE

What are the possible quantum number for the last outermost class 11 chemistry CBSE

Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE

What happens when entropy reaches maximum class 11 chemistry JEE_Main

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

How will you bring about the following conversions class 12 chemistry CBSE

Consider a system of two identical particles One of class 11 physics CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

State the laws of reflection of light