Answer

Verified

384k+ views

**Hint:**The given expression is written in the formula for the ratio test. The determination of the expression whether it is convergent, divergent or inconclusive is conditional and is based on the value of the limit we will get on solving the ratio test equation.

**Complete step-by-step answer:**

According to the question, we have to check whether the expression is convergent or divergent. Before moving on with the solution, we will first try to understand the question.

The given question can also be written as:

\[\sum\limits_{n=1}^{\infty }{\dfrac{{{3}^{n}}{{(n!)}^{2}}}{(2n)!}}\]

So, the question says how will the expression respond when the value of \[n\] increases, that is when the value of \[n\] approaches infinity. For this, we will be using ratio test, which can be stated as follows:

For an expression in the form \[\sum\limits_{n=1}^{\infty }{{{a}_{n}}}\] where the value of \[n\] approaches infinity then limiting the value of \[n\] as \[n \to \infty \] using the formula : \[\displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|=L\]

And if \[L<1\], then the series converges

for \[L>1\], the series diverges

and when \[L=1\], then it is inconclusive or cannot say how it will respond.

We can also see factorials in our question. So, factorials are expressed with a (!) sign.

For example - \[a!=a\times (a-1)\times (a-2)...\]

Now, we are ready to start solving the question.

The expression we have is \[\sum\limits_{n=1}^{\infty }{\dfrac{{{3}^{n}}{{(n!)}^{2}}}{(2n)!}}\], writing this expression in the formula for ratio test \[\left( \displaystyle \lim_{n \to \infty }\left| \dfrac{{{a}_{n+1}}}{{{a}_{n}}} \right|=L \right)\], we have

First, we will write the value for \[{{a}_{n+1}}\] and \[{{a}_{n}}\],

\[{{a}_{n+1}}=\dfrac{{{3}^{n+1}}{{((n+1)!)}^{2}}}{(2(n+1))!}\] and \[{{a}_{n}}=\dfrac{{{3}^{n}}{{(n!)}^{2}}}{(2n)!}\]

Substituting in the expression of ratio test, we have

\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{\dfrac{{{3}^{n+1}}{{((n+1)!)}^{2}}}{(2(n+1))!}}{\dfrac{{{3}^{n}}{{(n!)}^{2}}}{(2n)!}} \right|=\displaystyle \lim_{n \to \infty }\left| \dfrac{{{3}^{n+1}}{{((n+1)!)}^{2}}}{(2(n+1))!}\times \dfrac{(2n)!}{{{3}^{n}}{{(n!)}^{2}}} \right|\]

\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{{{3}^{n}}.3{{((n+1)!)}^{2}}}{(2n+2))!}\times \dfrac{(2n)!}{{{3}^{n}}{{(n!)}^{2}}} \right|\]

Now we open up the factorials to cancel the similar terms,

\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{3{{((n+1)(n!))}^{2}}}{(2n+2)(2n+1)(2n)!}\times \dfrac{(2n)!}{{{(n!)}^{2}}} \right|\]

\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{3{{(n+1)}^{2}}{{(n!)}^{2}}}{(2n+2)(2n+1)}\times \dfrac{1}{{{(n!)}^{2}}} \right|\]

\[\Rightarrow \displaystyle \lim_{n \to \infty }\left| \dfrac{3{{(n+1)}^{2}}}{(2(n+1))(2n+1)}\times \dfrac{1}{1} \right|\]

\[\Rightarrow \dfrac{3}{2}\displaystyle \lim_{n \to \infty }\left| \dfrac{{{(n+1)}^{2}}}{(n+1)(2n+1)} \right|=\dfrac{3}{2}\displaystyle \lim_{n \to \infty }\left| \dfrac{(n+1)}{(2n+1)} \right|\]

Multiplying and dividing by \[1/n\], we get

\[\Rightarrow \dfrac{3}{2}\displaystyle \lim_{n \to \infty }\left| \dfrac{(n+1)}{(2n+1)}\times \dfrac{1/n}{1/n} \right|=\dfrac{3}{2}\displaystyle \lim_{n \to \infty }\left| \dfrac{(1+(1/n))}{(2+(1/n))} \right|\]

\[\Rightarrow \dfrac{3}{2}\displaystyle \lim_{n \to \infty }\left| \dfrac{(1+(1/n))}{(2+(1/n))} \right|=\dfrac{3}{2}\left| \dfrac{(1+(0)}{(2+(0))} \right|\]

\[\Rightarrow \dfrac{3}{2}\left( \dfrac{1}{2} \right)=\dfrac{3}{4}\]

which is less than 1 as \[\left( \dfrac{3}{4}<1 \right)\].

According to the ratio test, if the value of the limit is less than 1 then, the expression is convergent.

Therefore, the expression is convergent.

**Note:**Apply the factorial expansion correctly else extra terms will add to the complexity of the expression. Expand the factorial in such a way that similar factorials get cancelled. Recall the conditions in the ratio test which determine whether the expression is convergent or divergent or none.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Guru Purnima speech in English in 100 words class 7 english CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Select the word that is correctly spelled a Twelveth class 10 english CBSE