Answer
Verified
397.2k+ views
Hint: Before we approach the solution, it is important to understand the nature of force acting among the electrons and protons. Since they are charged bodies, there is an electrostatic force acting between them, which is given by Coulomb's law. Also, weight is equal to the mass times the acceleration due to gravity.
Complete step by step answer:
The problem has two parts: First part is if the charge is electron and second part is if the charge is a proton.
Part A: Electrons
Consider two electrons placed at a distance r. The electrostatic force acting between them is given by Coulomb's law which states the force between the two charges is directly proportional to the product of the charges and inversely proportional to the distance between the charges.
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
where ${\varepsilon _0}$ = absolute permittivity of free space.
The charge on an electron is equal to –
$e = 1. 602 \times {10^{ - 19}}C$
The weight of the electron is equal to the product of mass and acceleration due to gravity.
$W = mg$
Mass of electron, $m = 9. 1 \times {10^{ - 31}}kg$
Acceleration due to gravity, $g = 10m{s^{ - 2}}$
Weight, $W = 9. 1 \times {10^{ - 31}} \times 10 = 9. 1 \times {10^{ - 30}}N$
Given that the force acting between the electrons is equal to the weight of an electron, we have –
$F = W$
$ \Rightarrow \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}} = W$
Substituting, we have –
$9 \times {10^9} \times \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2}}}{{{r^2}}} = 9. 1 \times {10^{ - 30}}$
$ \Rightarrow {r^2} = \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2} \times 9 \times {{10}^9}}}{{9. 1 \times {{10}^{ - 30}}}}$
$ \Rightarrow {r^2} = \dfrac{{2. 56 \times {{10}^{ - 38}} \times 9 \times {{10}^9}}}{{9. 1 \times {{10}^{ - 30}}}}$
\[ \Rightarrow {r^2} = \dfrac{{2. 56 \times 9}}{{9. 1}} \times {10^{ - 38 + 9 + 30}}\]
\[ \Rightarrow {r^2} = 2. 5318 \times 10 = 25. 318\]
\[\therefore r = \sqrt {25. 318} = 5. 031m\]
Thus, the distance of separation is equal to 5.03 m
Part B: Protons
Consider two protons placed at a distance r. The electrostatic force acting between them is given by Coulomb's law which states the force between the two charges is directly proportional to the product of the charges and inversely proportional to the distance between the charges.
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
where ${\varepsilon _0}$ = absolute permittivity of free space.
The charge on a proton is equal to –
$e = 1. 602 \times {10^{ - 19}}C$
The weight of the proton is equal to the product of mass and acceleration due to gravity.
$W = mg$
Mass of electron, $m = 1. 67 \times {10^{ - 27}}kg$
Acceleration due to gravity, $g = 10m{s^{ - 2}}$
Weight, $W = 1. 67 \times {10^{ - 27}} \times 10 = 1. 67 \times {10^{ - 26}}N$
Given that the force acting between the protons is equal to the weight of a proton, we have
$F = W$
$ \Rightarrow \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}} = W$
Substituting, we have –
$9 \times {10^9} \times \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2}}}{{{r^2}}} = 1. 67 \times {10^{ - 26}}$
$ \Rightarrow {r^2} = \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2} \times 9 \times {{10}^9}}}{{1. 67 \times {{10}^{ - 26}}}}$
$ \Rightarrow {r^2} = \dfrac{{2. 56 \times {{10}^{ - 38}} \times 9 \times {{10}^9}}}{{1. 67 \times {{10}^{ - 26}}}}$
\[ \Rightarrow {r^2} = \dfrac{{2. 56 \times 9}}{{1. 67}} \times {10^{ - 38 + 9 + 26}}\]
\[ \Rightarrow {r^2} = 13. 796 \times {10^{ - 3}} = 0. 0137\]
\[\therefore r = \sqrt {0. 0137} = 0. 117m\]
Hence, the distance of separation is equal to 0.117m.
Note: The proton and electron have the same charge, known as the fundamental charge $e = 1. 602 \times {10^{ - 19}}C$, but they are opposite in sign. While proton has charge equal to $ + e$, the charge of electrons is $ - e$. However, in this question, only the magnitude of the charge is considered in the calculations and not the sign.
Complete step by step answer:
The problem has two parts: First part is if the charge is electron and second part is if the charge is a proton.
Part A: Electrons
Consider two electrons placed at a distance r. The electrostatic force acting between them is given by Coulomb's law which states the force between the two charges is directly proportional to the product of the charges and inversely proportional to the distance between the charges.
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
where ${\varepsilon _0}$ = absolute permittivity of free space.
The charge on an electron is equal to –
$e = 1. 602 \times {10^{ - 19}}C$
The weight of the electron is equal to the product of mass and acceleration due to gravity.
$W = mg$
Mass of electron, $m = 9. 1 \times {10^{ - 31}}kg$
Acceleration due to gravity, $g = 10m{s^{ - 2}}$
Weight, $W = 9. 1 \times {10^{ - 31}} \times 10 = 9. 1 \times {10^{ - 30}}N$
Given that the force acting between the electrons is equal to the weight of an electron, we have –
$F = W$
$ \Rightarrow \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}} = W$
Substituting, we have –
$9 \times {10^9} \times \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2}}}{{{r^2}}} = 9. 1 \times {10^{ - 30}}$
$ \Rightarrow {r^2} = \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2} \times 9 \times {{10}^9}}}{{9. 1 \times {{10}^{ - 30}}}}$
$ \Rightarrow {r^2} = \dfrac{{2. 56 \times {{10}^{ - 38}} \times 9 \times {{10}^9}}}{{9. 1 \times {{10}^{ - 30}}}}$
\[ \Rightarrow {r^2} = \dfrac{{2. 56 \times 9}}{{9. 1}} \times {10^{ - 38 + 9 + 30}}\]
\[ \Rightarrow {r^2} = 2. 5318 \times 10 = 25. 318\]
\[\therefore r = \sqrt {25. 318} = 5. 031m\]
Thus, the distance of separation is equal to 5.03 m
Part B: Protons
Consider two protons placed at a distance r. The electrostatic force acting between them is given by Coulomb's law which states the force between the two charges is directly proportional to the product of the charges and inversely proportional to the distance between the charges.
$F = \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}}$
where ${\varepsilon _0}$ = absolute permittivity of free space.
The charge on a proton is equal to –
$e = 1. 602 \times {10^{ - 19}}C$
The weight of the proton is equal to the product of mass and acceleration due to gravity.
$W = mg$
Mass of electron, $m = 1. 67 \times {10^{ - 27}}kg$
Acceleration due to gravity, $g = 10m{s^{ - 2}}$
Weight, $W = 1. 67 \times {10^{ - 27}} \times 10 = 1. 67 \times {10^{ - 26}}N$
Given that the force acting between the protons is equal to the weight of a proton, we have
$F = W$
$ \Rightarrow \dfrac{1}{{4\pi {\varepsilon _0}}}\dfrac{{{q_1}{q_2}}}{{{r^2}}} = W$
Substituting, we have –
$9 \times {10^9} \times \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2}}}{{{r^2}}} = 1. 67 \times {10^{ - 26}}$
$ \Rightarrow {r^2} = \dfrac{{{{\left( {1. 6 \times {{10}^{ - 19}}} \right)}^2} \times 9 \times {{10}^9}}}{{1. 67 \times {{10}^{ - 26}}}}$
$ \Rightarrow {r^2} = \dfrac{{2. 56 \times {{10}^{ - 38}} \times 9 \times {{10}^9}}}{{1. 67 \times {{10}^{ - 26}}}}$
\[ \Rightarrow {r^2} = \dfrac{{2. 56 \times 9}}{{1. 67}} \times {10^{ - 38 + 9 + 26}}\]
\[ \Rightarrow {r^2} = 13. 796 \times {10^{ - 3}} = 0. 0137\]
\[\therefore r = \sqrt {0. 0137} = 0. 117m\]
Hence, the distance of separation is equal to 0.117m.
Note: The proton and electron have the same charge, known as the fundamental charge $e = 1. 602 \times {10^{ - 19}}C$, but they are opposite in sign. While proton has charge equal to $ + e$, the charge of electrons is $ - e$. However, in this question, only the magnitude of the charge is considered in the calculations and not the sign.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE