What is the angle between the electric dipole moment and the electric field strength due to it on the equatorial line?
(A) $ {0^0} $
(B) $ {90^0} $
(C) $ {180^0} $
(D) None of these
Answer
175.2k+ views
Hint: We know that the electric dipole direction is from negative charge to the positive one. We then find the direction of the electric field on the equatorial line. Then find the angle between them.
Formulae Used:
$ p = qd $
Where, $ p $ is the dipole moment of the dipole, $ q $ is the magnitude of the either charges and $ d $ is the distance between the charges.
Complete Step By Step Solution
Here, we take $ O $ as the midpoint of a dipole $ AB $
Thus, $ AO = OB = d/2 $
Here, $ P $ is a point on the equatorial line.
Now, Let, $ OP = x $
So, $ AP = BP = {\left[ {{{\left( {d/2} \right)}^2} + {x^2}} \right]^{1/2}} $
Now, Electric field strength on $ P $ due to $ + q $ is,
$ {E_{ + q}} = kq/{\left( {AP} \right)^2} $
Where, k is the universal electric force constant.
Again, Electric field strength on $ P $ due to $ -q $ is,
$ {E_{ - q}} = kq/{\left( {BP} \right)^2} $
Now, For the resultant electric field we need to take the component of both the fields in the direction of the resultant and then add them,
Thus, Resultant Field,
$ {E_r} = {E_{ + q}}cos\theta {\text{ }} + {E_{ - q}}cos\theta $
By putting all the values, we get,
$ {E_r} = 2kqcos\theta /{\left[ {{{\left( {d/2} \right)}^2} + {x^2}} \right]^{1/2}} $
Now, From our knowledge of fields , it is clear that the direction of the resultant or the net electric field on the equatorial line is opposite to the direction of the dipole.
Thus, the angle between them is $ {180^0} $ which is (C).
Note
The direction of the electric field is towards a negative charge and away from a positive charge. The distance between the dipole and the point $ P $ on the equatorial line is a variable, thus, this analogy could be extended till infinity.
Formulae Used:
$ p = qd $
Where, $ p $ is the dipole moment of the dipole, $ q $ is the magnitude of the either charges and $ d $ is the distance between the charges.
Complete Step By Step Solution
Here, we take $ O $ as the midpoint of a dipole $ AB $
Thus, $ AO = OB = d/2 $
Here, $ P $ is a point on the equatorial line.
Now, Let, $ OP = x $
So, $ AP = BP = {\left[ {{{\left( {d/2} \right)}^2} + {x^2}} \right]^{1/2}} $
Now, Electric field strength on $ P $ due to $ + q $ is,
$ {E_{ + q}} = kq/{\left( {AP} \right)^2} $
Where, k is the universal electric force constant.
Again, Electric field strength on $ P $ due to $ -q $ is,
$ {E_{ - q}} = kq/{\left( {BP} \right)^2} $
Now, For the resultant electric field we need to take the component of both the fields in the direction of the resultant and then add them,
Thus, Resultant Field,
$ {E_r} = {E_{ + q}}cos\theta {\text{ }} + {E_{ - q}}cos\theta $
By putting all the values, we get,
$ {E_r} = 2kqcos\theta /{\left[ {{{\left( {d/2} \right)}^2} + {x^2}} \right]^{1/2}} $
Now, From our knowledge of fields , it is clear that the direction of the resultant or the net electric field on the equatorial line is opposite to the direction of the dipole.
Thus, the angle between them is $ {180^0} $ which is (C).
Note
The direction of the electric field is towards a negative charge and away from a positive charge. The distance between the dipole and the point $ P $ on the equatorial line is a variable, thus, this analogy could be extended till infinity.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

If the distance bfs covered by a particle in time t class 11 physics JEE_Main

A spring of spring constant 5rm times rm 103Nm 1is class 11 physics JEE_Main

What are the effects of earth motion class 11 physics JEE_Main

A monoatomic gas of mass 40mu is kept in an insulated class 11 physics JEE_Main

The decrease in the potential energy of a ball of mass class 11 physics JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
