
An observer 1.5 m tall is 28.5 m away from a tower. The angle of elevation of the top of the tower from his/her eyes has measure 45 degrees. What is the height of the tower?
A. 28.5 m
B. 30 m
C. 27 m
D. 1.5 m
Answer
611.4k+ views
Hint: In order to solve this problem firstly draw the diagram then apply the concept of trigonometric angles in the triangles with the help of given data. Doing this will take you to the actual height of the tower.
Complete step-by-step answer:
The diagram for solving this problem has been drawn above. Lengths are in meters and angles are in degrees.
CE is the height of man = 1.5 m
AD is the height of the tower = BD + AB = 1.5 + AB (As BD and CE are opposite sides of rectangle BDEC therefore BD = CE)
So, we have to find AD which is equals to 1.5 + AB ……(1)
So, if we find AB we can find AD from (1).
On considering triangle ABC from the figure we can say that,
tan 45 = 1 = $\dfrac{{{\text{AB}}}}{{{\text{BC}}}}$ ……(2)
We know that BC = DE =28.5 ($\because $ they are the opposite sides of the rectangle)
On putting the value of BC in (2) we get the equation as:
AB=(1)(28.5)=28.5
So, AB = 28.5
Height of the tower AD = 28.5 + 1.5 = 30 (From (1))
Hence, the height of the tower is 30 meters.
So, the correct option is B.
Note: In this type of problem students often make the mistake of excluding the height of the man in height of the tower.
Complete step-by-step answer:
The diagram for solving this problem has been drawn above. Lengths are in meters and angles are in degrees.
CE is the height of man = 1.5 m
AD is the height of the tower = BD + AB = 1.5 + AB (As BD and CE are opposite sides of rectangle BDEC therefore BD = CE)
So, we have to find AD which is equals to 1.5 + AB ……(1)
So, if we find AB we can find AD from (1).
On considering triangle ABC from the figure we can say that,
tan 45 = 1 = $\dfrac{{{\text{AB}}}}{{{\text{BC}}}}$ ……(2)
We know that BC = DE =28.5 ($\because $ they are the opposite sides of the rectangle)
On putting the value of BC in (2) we get the equation as:
AB=(1)(28.5)=28.5
So, AB = 28.5
Height of the tower AD = 28.5 + 1.5 = 30 (From (1))
Hence, the height of the tower is 30 meters.
So, the correct option is B.
Note: In this type of problem students often make the mistake of excluding the height of the man in height of the tower.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

What are luminous and Non luminous objects class 10 physics CBSE

