Answer
Verified
493.8k+ views
Hint: Determine the sides of the triangle first. And then use Heron’s formula for the area of a triangle.
According to the question, the perimeter of the triangle is $30cm$. Then the semi-perimeter will be:
$ \Rightarrow s = \dfrac{{30}}{2} = 15cm$.
Length of two equal sides of the triangle is $12cm$ (given in the question).
Let the length of the third side is $x$. Then we can use perimeter to find the value of $x$. We’ll get:
$
\Rightarrow 12 + 12 + x = 30, \\
\Rightarrow x = 30 - 24, \\
\Rightarrow x = 6 \\
$
So, we have $12cm, 12cm$ and $6cm$ as the length of three sides of a triangle whose semi-perimeter is $s = 15cm$.
Now, we can use Heron’s Formula to determine its area. We have:
$ \Rightarrow A = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $, where $a,b,c$ are length of sides of triangle in any order.
So, putting values from above, we’ll get:
$
\Rightarrow A = \sqrt {15\left( {15 - 12} \right)\left( {15 - 12} \right)\left( {15 - 6} \right)} , \\
\Rightarrow A = \sqrt {15 \times 3 \times 3 \times 9} , \\
\Rightarrow A = 3 \times 3 \times \sqrt {15} , \\
\Rightarrow A = 9\sqrt {15} \\
$
Thus the area of the triangle is $9\sqrt {15} c{m^2}$.
Note:
We can also use $Area = \dfrac{1}{2} \times b \times h$ to find out its area.
For an isosceles triangle, base is always the unequal side. So, in this case $b = 6cm$.
And we can easily find out the height of an isosceles using Pythagoras Theorem.
$
\Rightarrow h = \sqrt {{{12}^2} - {{\left( {\dfrac{b}{2}} \right)}^2}} , \\
\Rightarrow h = \sqrt {144 - 9} , \\
\Rightarrow h = \sqrt {135} , \\
\Rightarrow h = 3\sqrt {15} \\
$
Now, we can use $\dfrac{1}{2} \times b \times h$. We’ll get the same result.
According to the question, the perimeter of the triangle is $30cm$. Then the semi-perimeter will be:
$ \Rightarrow s = \dfrac{{30}}{2} = 15cm$.
Length of two equal sides of the triangle is $12cm$ (given in the question).
Let the length of the third side is $x$. Then we can use perimeter to find the value of $x$. We’ll get:
$
\Rightarrow 12 + 12 + x = 30, \\
\Rightarrow x = 30 - 24, \\
\Rightarrow x = 6 \\
$
So, we have $12cm, 12cm$ and $6cm$ as the length of three sides of a triangle whose semi-perimeter is $s = 15cm$.
Now, we can use Heron’s Formula to determine its area. We have:
$ \Rightarrow A = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $, where $a,b,c$ are length of sides of triangle in any order.
So, putting values from above, we’ll get:
$
\Rightarrow A = \sqrt {15\left( {15 - 12} \right)\left( {15 - 12} \right)\left( {15 - 6} \right)} , \\
\Rightarrow A = \sqrt {15 \times 3 \times 3 \times 9} , \\
\Rightarrow A = 3 \times 3 \times \sqrt {15} , \\
\Rightarrow A = 9\sqrt {15} \\
$
Thus the area of the triangle is $9\sqrt {15} c{m^2}$.
Note:
We can also use $Area = \dfrac{1}{2} \times b \times h$ to find out its area.
For an isosceles triangle, base is always the unequal side. So, in this case $b = 6cm$.
And we can easily find out the height of an isosceles using Pythagoras Theorem.
$
\Rightarrow h = \sqrt {{{12}^2} - {{\left( {\dfrac{b}{2}} \right)}^2}} , \\
\Rightarrow h = \sqrt {144 - 9} , \\
\Rightarrow h = \sqrt {135} , \\
\Rightarrow h = 3\sqrt {15} \\
$
Now, we can use $\dfrac{1}{2} \times b \times h$. We’ll get the same result.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE