
An electromagnetic wave is represented by the electric field $\overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left[ \omega t+\left( 6y-8z \right) \right]$. Taking unit vectors in x, y and z directions to be $\widehat{i,}\widehat{j},\widehat{k}$ the directions of propagation $\widehat{s}$is:
$\begin{align}
& A.\text{ }\widehat{s}=\dfrac{4\widehat{j}-3\widehat{k}}{5} \\
& B.\text{ }\widehat{s}=\dfrac{3\widehat{i}-4\widehat{j}}{5} \\
& C.\text{ }\widehat{s}=\left[ \dfrac{-3\widehat{j}+4\widehat{k}}{5} \right] \\
& D.\text{ }\widehat{s}=\left[ \dfrac{-4\widehat{k}+3\widehat{j}}{5} \right] \\
\end{align}$
Answer
553.5k+ views
Hint: First we will compare given formula to actual electric field formula $\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]$after that we will convert the unit vectors 6y – 8z into direction vector then after we can find $\widehat{s}$after comparing equation.
Formula used:
$\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]$
Complete answer:
It is given that the electric field,
$\overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left[ \omega t+\left( 6y-8z \right) \right]....\left( 1 \right)$
In order to find direction of propagation $\widehat{s}$we have to compare above equation to actual electric field equation and that equation is
$\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]....\left( 2 \right)$
Where,
${{E}_{0}}$ = initial electric field.
ω = angular velocity
t = time
$\widehat{s}$= propagation vector
k = resultant vector.
Now in order to compare both equations we have to convert equation (1) into direction vector. Now it is given that direction of y is $\widehat{j}$ vector and z is represented by $\widehat{k}$ vector so that,
$6y-8z=6\widehat{j}-8\widehat{k}$
Now equation (1) can be written as,
$\begin{align}
& \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+\left( 6\widehat{j}-8\widehat{k} \right) \right) \\
& \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+(-\left( -6\widehat{j}+8\widehat{k} \right) \right) \\
& \therefore \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t-\left( 8\widehat{k}-6\widehat{j} \right) \right)......(3) \\
\end{align}$
Now comparing equation (2) and (3) we can get
$k\widehat{s}=8\widehat{k}-6\widehat{j}......\left( 4 \right)$
Here k is resultant vector to find k we have to use below formula
$\begin{align}
& \Rightarrow k=\sqrt{{{\left( x\widehat{i} \right)}^{2}}+{{\left( y\widehat{j} \right)}^{2}}+{{\left( z\widehat{k} \right)}^{2}}} \\
& \Rightarrow k=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 6\widehat{j} \right)}^{2}}+{{\left( -8\widehat{k} \right)}^{2}}} \\
& \Rightarrow k=\sqrt{36+64} \\
& \Rightarrow k=\sqrt{100} \\
& \therefore k=10......\left( 5 \right) \\
\end{align}$
Now put the value of k in equation (4)
$\begin{align}
& \Rightarrow 10\left( \widehat{s} \right)=8\widehat{k}-6\widehat{j} \\
& \Rightarrow \widehat{s}=\dfrac{8\widehat{k}-6\widehat{j}}{10} \\
\end{align}$
$\therefore \widehat{s}=\dfrac{4\widehat{k}-3\widehat{j}}{5}$
Here $\widehat{s}$is direction of propagation of the light.
So hence the correct option is (C) .
Note:
So when we compare both the equations then we have to see the sign of the equation for example in equation (3) (I) will take negative (-ve) sign common so that the ( I) can relate the equation and can match the negative (-ve) sign with the other equation. So the correct option is (C).
Formula used:
$\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]$
Complete answer:
It is given that the electric field,
$\overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left[ \omega t+\left( 6y-8z \right) \right]....\left( 1 \right)$
In order to find direction of propagation $\widehat{s}$we have to compare above equation to actual electric field equation and that equation is
$\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]....\left( 2 \right)$
Where,
${{E}_{0}}$ = initial electric field.
ω = angular velocity
t = time
$\widehat{s}$= propagation vector
k = resultant vector.
Now in order to compare both equations we have to convert equation (1) into direction vector. Now it is given that direction of y is $\widehat{j}$ vector and z is represented by $\widehat{k}$ vector so that,
$6y-8z=6\widehat{j}-8\widehat{k}$
Now equation (1) can be written as,
$\begin{align}
& \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+\left( 6\widehat{j}-8\widehat{k} \right) \right) \\
& \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+(-\left( -6\widehat{j}+8\widehat{k} \right) \right) \\
& \therefore \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t-\left( 8\widehat{k}-6\widehat{j} \right) \right)......(3) \\
\end{align}$
Now comparing equation (2) and (3) we can get
$k\widehat{s}=8\widehat{k}-6\widehat{j}......\left( 4 \right)$
Here k is resultant vector to find k we have to use below formula
$\begin{align}
& \Rightarrow k=\sqrt{{{\left( x\widehat{i} \right)}^{2}}+{{\left( y\widehat{j} \right)}^{2}}+{{\left( z\widehat{k} \right)}^{2}}} \\
& \Rightarrow k=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 6\widehat{j} \right)}^{2}}+{{\left( -8\widehat{k} \right)}^{2}}} \\
& \Rightarrow k=\sqrt{36+64} \\
& \Rightarrow k=\sqrt{100} \\
& \therefore k=10......\left( 5 \right) \\
\end{align}$
Now put the value of k in equation (4)
$\begin{align}
& \Rightarrow 10\left( \widehat{s} \right)=8\widehat{k}-6\widehat{j} \\
& \Rightarrow \widehat{s}=\dfrac{8\widehat{k}-6\widehat{j}}{10} \\
\end{align}$
$\therefore \widehat{s}=\dfrac{4\widehat{k}-3\widehat{j}}{5}$
Here $\widehat{s}$is direction of propagation of the light.
So hence the correct option is (C) .
Note:
So when we compare both the equations then we have to see the sign of the equation for example in equation (3) (I) will take negative (-ve) sign common so that the ( I) can relate the equation and can match the negative (-ve) sign with the other equation. So the correct option is (C).
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

