Answer
Verified
408.6k+ views
Hint: First we will compare given formula to actual electric field formula $\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]$after that we will convert the unit vectors 6y – 8z into direction vector then after we can find $\widehat{s}$after comparing equation.
Formula used:
$\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]$
Complete answer:
It is given that the electric field,
$\overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left[ \omega t+\left( 6y-8z \right) \right]....\left( 1 \right)$
In order to find direction of propagation $\widehat{s}$we have to compare above equation to actual electric field equation and that equation is
$\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]....\left( 2 \right)$
Where,
${{E}_{0}}$ = initial electric field.
ω = angular velocity
t = time
$\widehat{s}$= propagation vector
k = resultant vector.
Now in order to compare both equations we have to convert equation (1) into direction vector. Now it is given that direction of y is $\widehat{j}$ vector and z is represented by $\widehat{k}$ vector so that,
$6y-8z=6\widehat{j}-8\widehat{k}$
Now equation (1) can be written as,
$\begin{align}
& \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+\left( 6\widehat{j}-8\widehat{k} \right) \right) \\
& \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+(-\left( -6\widehat{j}+8\widehat{k} \right) \right) \\
& \therefore \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t-\left( 8\widehat{k}-6\widehat{j} \right) \right)......(3) \\
\end{align}$
Now comparing equation (2) and (3) we can get
$k\widehat{s}=8\widehat{k}-6\widehat{j}......\left( 4 \right)$
Here k is resultant vector to find k we have to use below formula
$\begin{align}
& \Rightarrow k=\sqrt{{{\left( x\widehat{i} \right)}^{2}}+{{\left( y\widehat{j} \right)}^{2}}+{{\left( z\widehat{k} \right)}^{2}}} \\
& \Rightarrow k=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 6\widehat{j} \right)}^{2}}+{{\left( -8\widehat{k} \right)}^{2}}} \\
& \Rightarrow k=\sqrt{36+64} \\
& \Rightarrow k=\sqrt{100} \\
& \therefore k=10......\left( 5 \right) \\
\end{align}$
Now put the value of k in equation (4)
$\begin{align}
& \Rightarrow 10\left( \widehat{s} \right)=8\widehat{k}-6\widehat{j} \\
& \Rightarrow \widehat{s}=\dfrac{8\widehat{k}-6\widehat{j}}{10} \\
\end{align}$
$\therefore \widehat{s}=\dfrac{4\widehat{k}-3\widehat{j}}{5}$
Here $\widehat{s}$is direction of propagation of the light.
So hence the correct option is (C) .
Note:
So when we compare both the equations then we have to see the sign of the equation for example in equation (3) (I) will take negative (-ve) sign common so that the ( I) can relate the equation and can match the negative (-ve) sign with the other equation. So the correct option is (C).
Formula used:
$\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]$
Complete answer:
It is given that the electric field,
$\overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left[ \omega t+\left( 6y-8z \right) \right]....\left( 1 \right)$
In order to find direction of propagation $\widehat{s}$we have to compare above equation to actual electric field equation and that equation is
$\overrightarrow{E}={{E}_{0}}\widehat{n}\left[ \omega t-\widehat{s}k \right]....\left( 2 \right)$
Where,
${{E}_{0}}$ = initial electric field.
ω = angular velocity
t = time
$\widehat{s}$= propagation vector
k = resultant vector.
Now in order to compare both equations we have to convert equation (1) into direction vector. Now it is given that direction of y is $\widehat{j}$ vector and z is represented by $\widehat{k}$ vector so that,
$6y-8z=6\widehat{j}-8\widehat{k}$
Now equation (1) can be written as,
$\begin{align}
& \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+\left( 6\widehat{j}-8\widehat{k} \right) \right) \\
& \Rightarrow \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t+(-\left( -6\widehat{j}+8\widehat{k} \right) \right) \\
& \therefore \overrightarrow{E}={{E}_{0}}\widehat{n}\sin \left( \omega t-\left( 8\widehat{k}-6\widehat{j} \right) \right)......(3) \\
\end{align}$
Now comparing equation (2) and (3) we can get
$k\widehat{s}=8\widehat{k}-6\widehat{j}......\left( 4 \right)$
Here k is resultant vector to find k we have to use below formula
$\begin{align}
& \Rightarrow k=\sqrt{{{\left( x\widehat{i} \right)}^{2}}+{{\left( y\widehat{j} \right)}^{2}}+{{\left( z\widehat{k} \right)}^{2}}} \\
& \Rightarrow k=\sqrt{{{\left( 0 \right)}^{2}}+{{\left( 6\widehat{j} \right)}^{2}}+{{\left( -8\widehat{k} \right)}^{2}}} \\
& \Rightarrow k=\sqrt{36+64} \\
& \Rightarrow k=\sqrt{100} \\
& \therefore k=10......\left( 5 \right) \\
\end{align}$
Now put the value of k in equation (4)
$\begin{align}
& \Rightarrow 10\left( \widehat{s} \right)=8\widehat{k}-6\widehat{j} \\
& \Rightarrow \widehat{s}=\dfrac{8\widehat{k}-6\widehat{j}}{10} \\
\end{align}$
$\therefore \widehat{s}=\dfrac{4\widehat{k}-3\widehat{j}}{5}$
Here $\widehat{s}$is direction of propagation of the light.
So hence the correct option is (C) .
Note:
So when we compare both the equations then we have to see the sign of the equation for example in equation (3) (I) will take negative (-ve) sign common so that the ( I) can relate the equation and can match the negative (-ve) sign with the other equation. So the correct option is (C).
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE