
An electric dipole of dipole moment \[\vec p\] is placed in an uniform electric field \[\vec E\] has minimum potential energy when the angle between \[\vec p\] and \[\vec E\] is
A. \[\dfrac{\pi }{2}\]
B. Zero
C. \[\pi \]
D. \[\dfrac{{3\pi }}{2}\]
Answer
510.5k+ views
Hint: Refer to the formula for the potential energy of the electric dipole. The negative sign of the potential energy of the dipole implies the minimum potential energy.
Formula used:
\[U\left( \theta \right) = - pE\cos \theta \]
Here, \[\theta \] is the angle between the dipole moment \[\vec p\] and the electric field \[\vec E\].
Complete step by step answer:
An electric dipole is a system of two opposite charges \[ + q\] and \[ - q\] separated by the distance \[2a\] placed in a uniform electric field \[\vec E\] as shown in the figure below.
The potential energy of the dipole is given by the equation,
\[U\left( \theta \right) = - pE\cos \theta \]
Here, \[\theta \] is the angle between the dipole moment \[\vec p\] and the electric field \[\vec E\].
The potential energy of the dipole is minimum, that is \[ - pE\] when \[\cos \theta = 1\]. Therefore, we can substitute \[0^\circ \] for \[\theta \].
Thus,
\[U\left( \theta \right) = - pE\cos \left( {0^\circ } \right)\]
\[ \Rightarrow U\left( \theta \right) = - pE\]
The potential energy of the dipole is zero, when the angle between dipole moment \[\vec p\] and electric field \[\vec E\] is \[\dfrac{\pi }{2}\].
Also, the potential energy of the dipole moment is maximum, that is \[ + pE\] when the angle between dipole moment \[\vec p\] and electric field \[\vec E\], is \[\pi \].
So, the correct answer is “Option C”.
Note:
The minimum potential energy of the dipole does not mean the potential energy to be zero. The potential energy of the dipole is minimum when the dipole is parallel to the external electric field. Also, it is the maximum when the dipole is anti-parallel to the external electric field.
Formula used:
\[U\left( \theta \right) = - pE\cos \theta \]
Here, \[\theta \] is the angle between the dipole moment \[\vec p\] and the electric field \[\vec E\].
Complete step by step answer:
An electric dipole is a system of two opposite charges \[ + q\] and \[ - q\] separated by the distance \[2a\] placed in a uniform electric field \[\vec E\] as shown in the figure below.
The potential energy of the dipole is given by the equation,
\[U\left( \theta \right) = - pE\cos \theta \]
Here, \[\theta \] is the angle between the dipole moment \[\vec p\] and the electric field \[\vec E\].
The potential energy of the dipole is minimum, that is \[ - pE\] when \[\cos \theta = 1\]. Therefore, we can substitute \[0^\circ \] for \[\theta \].
Thus,
\[U\left( \theta \right) = - pE\cos \left( {0^\circ } \right)\]
\[ \Rightarrow U\left( \theta \right) = - pE\]
The potential energy of the dipole is zero, when the angle between dipole moment \[\vec p\] and electric field \[\vec E\] is \[\dfrac{\pi }{2}\].
Also, the potential energy of the dipole moment is maximum, that is \[ + pE\] when the angle between dipole moment \[\vec p\] and electric field \[\vec E\], is \[\pi \].
So, the correct answer is “Option C”.
Note:
The minimum potential energy of the dipole does not mean the potential energy to be zero. The potential energy of the dipole is minimum when the dipole is parallel to the external electric field. Also, it is the maximum when the dipole is anti-parallel to the external electric field.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

