
An electric dipole of dipole moment \[\vec p\] is placed in an uniform electric field \[\vec E\] has minimum potential energy when the angle between \[\vec p\] and \[\vec E\] is
A. \[\dfrac{\pi }{2}\]
B. Zero
C. \[\pi \]
D. \[\dfrac{{3\pi }}{2}\]
Answer
513.8k+ views
Hint: Refer to the formula for the potential energy of the electric dipole. The negative sign of the potential energy of the dipole implies the minimum potential energy.
Formula used:
\[U\left( \theta \right) = - pE\cos \theta \]
Here, \[\theta \] is the angle between the dipole moment \[\vec p\] and the electric field \[\vec E\].
Complete step by step answer:
An electric dipole is a system of two opposite charges \[ + q\] and \[ - q\] separated by the distance \[2a\] placed in a uniform electric field \[\vec E\] as shown in the figure below.
The potential energy of the dipole is given by the equation,
\[U\left( \theta \right) = - pE\cos \theta \]
Here, \[\theta \] is the angle between the dipole moment \[\vec p\] and the electric field \[\vec E\].
The potential energy of the dipole is minimum, that is \[ - pE\] when \[\cos \theta = 1\]. Therefore, we can substitute \[0^\circ \] for \[\theta \].
Thus,
\[U\left( \theta \right) = - pE\cos \left( {0^\circ } \right)\]
\[ \Rightarrow U\left( \theta \right) = - pE\]
The potential energy of the dipole is zero, when the angle between dipole moment \[\vec p\] and electric field \[\vec E\] is \[\dfrac{\pi }{2}\].
Also, the potential energy of the dipole moment is maximum, that is \[ + pE\] when the angle between dipole moment \[\vec p\] and electric field \[\vec E\], is \[\pi \].
So, the correct answer is “Option C”.
Note:
The minimum potential energy of the dipole does not mean the potential energy to be zero. The potential energy of the dipole is minimum when the dipole is parallel to the external electric field. Also, it is the maximum when the dipole is anti-parallel to the external electric field.
Formula used:
\[U\left( \theta \right) = - pE\cos \theta \]
Here, \[\theta \] is the angle between the dipole moment \[\vec p\] and the electric field \[\vec E\].
Complete step by step answer:
An electric dipole is a system of two opposite charges \[ + q\] and \[ - q\] separated by the distance \[2a\] placed in a uniform electric field \[\vec E\] as shown in the figure below.
The potential energy of the dipole is given by the equation,
\[U\left( \theta \right) = - pE\cos \theta \]
Here, \[\theta \] is the angle between the dipole moment \[\vec p\] and the electric field \[\vec E\].
The potential energy of the dipole is minimum, that is \[ - pE\] when \[\cos \theta = 1\]. Therefore, we can substitute \[0^\circ \] for \[\theta \].
Thus,
\[U\left( \theta \right) = - pE\cos \left( {0^\circ } \right)\]
\[ \Rightarrow U\left( \theta \right) = - pE\]
The potential energy of the dipole is zero, when the angle between dipole moment \[\vec p\] and electric field \[\vec E\] is \[\dfrac{\pi }{2}\].
Also, the potential energy of the dipole moment is maximum, that is \[ + pE\] when the angle between dipole moment \[\vec p\] and electric field \[\vec E\], is \[\pi \].
So, the correct answer is “Option C”.
Note:
The minimum potential energy of the dipole does not mean the potential energy to be zero. The potential energy of the dipole is minimum when the dipole is parallel to the external electric field. Also, it is the maximum when the dipole is anti-parallel to the external electric field.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

