Answer
Verified
446.1k+ views
Hint: Molality is the ratio of number of moles of solute to the mass of solvent in kilograms.
We will first find the moles of urea, which is the ratio of mass to molar mass.
Complete step by step answer:
- As we know that density is the ratio of mass to volume.
- We are provided with density = 1.052 g/ml, so we can say that 1500 ml of solution corresponds to $1.052 g/ml\times 1500 ml = 1578 g$
- Molar mass of urea is 60 g/mol
- We will find the number of moles of urea, which is the ratio of mass to molar mass. It is:
\[\begin{align}
& \frac{18g}{60g/mol} \\
& =0.3mol \\
\end{align}\]
- We know that molality is the ratio of number of moles of solute to the mass of solvent. Hence, we can write, mass of water = 1575 g - 18 g = 1560 g
We will convert 1560 gram to kilogram= 1.560 kg, as (1 kg = 1000 g)
-Now, we will calculate molality as:
\[Molality=\frac{number\text{ }of\text{ }moles\text{ }of\text{ }urea}{mass\text{ }of\text{ }water\text{ }in\text{ }kg}\]
\[Molality=\frac{0.3} {\begin{align}
&1.560 \\ \end{align}}\] $= 0.192 m$
Hence, we can conclude that the correct option is (B), that is the molality of the solution is 0.192 m.
Note: We must not forget to write units after solving any question, here the unit of molality is m. We must convert the mass of the solvent given in grams into kilograms. We should not get confused in the terms molality and molarity. Molality is the ratio of number of moles of solute to the mass of solvent in kilograms. Whereas, molarity is the moles of a solute per litres of solution.
We will first find the moles of urea, which is the ratio of mass to molar mass.
Complete step by step answer:
- As we know that density is the ratio of mass to volume.
- We are provided with density = 1.052 g/ml, so we can say that 1500 ml of solution corresponds to $1.052 g/ml\times 1500 ml = 1578 g$
- Molar mass of urea is 60 g/mol
- We will find the number of moles of urea, which is the ratio of mass to molar mass. It is:
\[\begin{align}
& \frac{18g}{60g/mol} \\
& =0.3mol \\
\end{align}\]
- We know that molality is the ratio of number of moles of solute to the mass of solvent. Hence, we can write, mass of water = 1575 g - 18 g = 1560 g
We will convert 1560 gram to kilogram= 1.560 kg, as (1 kg = 1000 g)
-Now, we will calculate molality as:
\[Molality=\frac{number\text{ }of\text{ }moles\text{ }of\text{ }urea}{mass\text{ }of\text{ }water\text{ }in\text{ }kg}\]
\[Molality=\frac{0.3} {\begin{align}
&1.560 \\ \end{align}}\] $= 0.192 m$
Hence, we can conclude that the correct option is (B), that is the molality of the solution is 0.192 m.
Note: We must not forget to write units after solving any question, here the unit of molality is m. We must convert the mass of the solvent given in grams into kilograms. We should not get confused in the terms molality and molarity. Molality is the ratio of number of moles of solute to the mass of solvent in kilograms. Whereas, molarity is the moles of a solute per litres of solution.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE