Answer
Verified
467.4k+ views
Hint: In the question, we are given the third term \[{{a}_{3}}\] and the last term \[{{a}_{50}}.\] We will use the formula \[{{a}_{n}}=a+\left( n-1 \right)d\] to find the value of a and d. Once we get the values of a and d, we will use the same formula to find the \[{{29}^{th}}\] term by putting n = 29.
Complete step-by-step answer:
We are given an AP whose third term is 12, that is \[{{a}_{3}}=12\] and the last term is 106, i.e. \[{{a}_{50}}=106.\]
Now, we know that the general term in an AP is given as
\[{{a}_{n}}=a+\left( n-1 \right)d\]
where a is the first term, d is the difference and n is the number of terms.
We have the third term as 12,
\[{{a}_{3}}=12\]
Therefore, using this value in the general formula, we get,
\[{{a}_{3}}=a+\left( 3-1 \right)d\]
\[\Rightarrow 12=a+2d.....\left( i \right)\]
Similarly, we have the last term as 106.
\[{{a}_{50}}=106\]
\[\Rightarrow {{a}_{50}}=a+\left( 50-1 \right)d\]
\[\Rightarrow 106=a+49d.....\left( ii \right)\]
Now, we will solve the for a and d using equation (i) and (ii).
Subtraction equation (ii) from (i), we get,
\[\begin{align}
& a+49d=106 \\
& a+2d=12 \\
& \underline{-\text{ }-\text{ }-} \\
& 47d=94 \\
\end{align}\]
Dividing both the sides by 47, we get,
\[\Rightarrow d=\dfrac{94}{47}=2\]
Therefore, we get the common difference, d = 2.
Now, putting the value, d = 2 in equation (i), we get,
\[a+2\times 2=12\]
\[\Rightarrow a+4=12\]
\[\Rightarrow a=8\]
Therefore, we get our first term as 8.
Now, we will find the \[{{29}^{th}}\] term. We know that,
\[{{a}_{n}}=a+\left( n-1 \right)d\]
For, \[{{a}_{29}},n=29.\]
Also, we have, a = 8 and d = 2. Therefore, we get,
\[{{a}_{29}}=8+\left( 29-1 \right)2\]
\[\Rightarrow {{a}_{29}}=8+28\times 2\]
\[\Rightarrow {{a}_{29}}=8+56\]
\[\Rightarrow {{a}_{29}}=64\]
So, we get the \[{{29}^{th}}\] term as 64.
Note:While solving for the third term and the last term, students need to remember that the third term is written as \[{{a}_{3}}=a+2d,\] writing \[{{a}_{3}}=a+3d\] will lead to a wrong solution. Also, students have to keep in mind that when subtracting two equations, you need to change the sign of the second equation which is being subtracted.
Complete step-by-step answer:
We are given an AP whose third term is 12, that is \[{{a}_{3}}=12\] and the last term is 106, i.e. \[{{a}_{50}}=106.\]
Now, we know that the general term in an AP is given as
\[{{a}_{n}}=a+\left( n-1 \right)d\]
where a is the first term, d is the difference and n is the number of terms.
We have the third term as 12,
\[{{a}_{3}}=12\]
Therefore, using this value in the general formula, we get,
\[{{a}_{3}}=a+\left( 3-1 \right)d\]
\[\Rightarrow 12=a+2d.....\left( i \right)\]
Similarly, we have the last term as 106.
\[{{a}_{50}}=106\]
\[\Rightarrow {{a}_{50}}=a+\left( 50-1 \right)d\]
\[\Rightarrow 106=a+49d.....\left( ii \right)\]
Now, we will solve the for a and d using equation (i) and (ii).
Subtraction equation (ii) from (i), we get,
\[\begin{align}
& a+49d=106 \\
& a+2d=12 \\
& \underline{-\text{ }-\text{ }-} \\
& 47d=94 \\
\end{align}\]
Dividing both the sides by 47, we get,
\[\Rightarrow d=\dfrac{94}{47}=2\]
Therefore, we get the common difference, d = 2.
Now, putting the value, d = 2 in equation (i), we get,
\[a+2\times 2=12\]
\[\Rightarrow a+4=12\]
\[\Rightarrow a=8\]
Therefore, we get our first term as 8.
Now, we will find the \[{{29}^{th}}\] term. We know that,
\[{{a}_{n}}=a+\left( n-1 \right)d\]
For, \[{{a}_{29}},n=29.\]
Also, we have, a = 8 and d = 2. Therefore, we get,
\[{{a}_{29}}=8+\left( 29-1 \right)2\]
\[\Rightarrow {{a}_{29}}=8+28\times 2\]
\[\Rightarrow {{a}_{29}}=8+56\]
\[\Rightarrow {{a}_{29}}=64\]
So, we get the \[{{29}^{th}}\] term as 64.
Note:While solving for the third term and the last term, students need to remember that the third term is written as \[{{a}_{3}}=a+2d,\] writing \[{{a}_{3}}=a+3d\] will lead to a wrong solution. Also, students have to keep in mind that when subtracting two equations, you need to change the sign of the second equation which is being subtracted.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it