Answer

Verified

454.5k+ views

**Hint:**Here, the height of the first aeroplane is given and we have to find how high this aeroplane is from the airplane whose height is not known. First find the distance of the observation point from the aeroplanes using the angle of elevation and the height given by using the formula, $\tan \theta = \dfrac{{\text{P}}}{{\text{B}}}$. Then find the height of the other aeroplane by using the same formula. Then subtract this height from the given height and you’ll get the answer.

**Complete step-by-step answer:**Given, the height of first aeroplane PS =$3000$ m whose angle of elevation from the observation point is $\angle {\text{PQS = 60}}^\circ $ .The second aeroplane has height PR= h m and the angle of elevation from observation point is $\angle {\text{PQR = 45}}^\circ $.We have to find the height of second plane from first aeroplane RS.

Let the distance of the observation point from both the planes PQ be x m. Then in right angled triangle SPQ,

$ \Rightarrow \tan \theta = \dfrac{{{\text{PS}}}}{{{\text{PQ}}}}$ $\left[ {{\text{as tan}}\theta {\text{ = }}\dfrac{{\text{P}}}{{\text{B}}}} \right]$

On putting the given values, we get-

$ \Rightarrow \tan {60^ \circ } = \dfrac{{3000}}{{\text{x}}} \Rightarrow \sqrt 3 = \dfrac{{3000}}{{\text{x}}}$

On rationalizing and solving for x, we get-

$ \Rightarrow {\text{x = }}\dfrac{{3000 \times \sqrt 3 }}{{\sqrt 3 \times \sqrt 3 }} = \dfrac{{3000\sqrt 3 }}{3} = 1000\sqrt 3 $ m

Now we need to find the height of the second aeroplane. So in right angled triangle RPQ,

$ \Rightarrow \tan {45^ \circ } = \dfrac{{{\text{PR}}}}{{{\text{PQ}}}}$ $ \Rightarrow 1 = \dfrac{{\text{h}}}{{\text{x}}} \Rightarrow {\text{h = x}}$

Since we know the value of x, we put it in the equation-

$ \Rightarrow {\text{h = 1000}} \times {\text{1}}{\text{.732 = 1732}}$ m

Now we have to find the height of the second aeroplane from first. So,

$ \Rightarrow {\text{RS = PS - PR}}$

On putting the given values, we get-

$ \Rightarrow {\text{RS = 3000 - 1732 = 1268}}$ m

**Hence the first aeroplane is $1268$ m high from the second aeroplane.**

**Note:**To solve this type of question, we have to draw the correct diagram. Hence it is important to read the statement carefully. In this question, the formula of $\tan \theta $ is used because one quantity is given and we have to find the other quantity and angle is also given. Here, P stands for perpendicular and B stands for base of triangle.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Who was the Governor general of India at the time of class 11 social science CBSE

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference Between Plant Cell and Animal Cell