
An aeroplane flying horizontally 1 km above the ground is observed at an angle of ${60^ \circ }$. If after 10 seconds the elevation is observed to be ${30^ \circ }$, find the uniform speed of the aeroplane.
Answer
513.7k+ views
Hint: Consider different triangles of different positions of the aeroplane. The distance travelled by the aeroplane in 10 seconds will be the difference between the different positions.
Complete step-by-step answer:
In the above figure, C is the initial position of the aeroplane. Its height above the ground is 1 km. Initial angle of elevation is ${60^ \circ }$. Then in triangle ABC, we have:
$
\Rightarrow \tan {60^ \circ } = \dfrac{{BC}}{{AB}}, \\
\Rightarrow \sqrt 3 = \dfrac{1}{{AB}}, \\
\Rightarrow AB = \dfrac{1}{{\sqrt 3 }} .....(i) \\
$
From the figure, $CE = BD$
Let the uniform speed of the aeroplane is $v{\text{ km/hr}}$. It moves horizontally for 10 seconds and reaches point E. We know, Distance $ = $Speed $ \times $time. Applying this, we’ll get:
$ \Rightarrow CE = v \times \dfrac{{10}}{{60 \times 60}}$
From the figure, $CE = BD$. So, we have:
$ \Rightarrow BD = v \times \dfrac{{10}}{{60 \times 60}} .....(ii)$
From the figure, we have:
$ \Rightarrow AD = AB + BD$
Putting the values of AB and BD from equations $(i)$ and $(ii)$ respectively, we’ll get:
$ \Rightarrow AD = \dfrac{1}{{\sqrt 3 }} + v \times \dfrac{{10}}{{60 \times 60}} .....(iii)$
The angle of elevation of the aeroplane now is ${30^ \circ }$. Thus, in triangle ADE, we have:
$
\Rightarrow \tan {30^ \circ } = \dfrac{{DE}}{{AD}}, \\
\Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{1}{{AD}}, \\
\Rightarrow AD = \sqrt 3 \\
$
Now putting the value of AD from equation $(iii)$, we’ll get:
$
\Rightarrow \dfrac{1}{{\sqrt 3 }} + v \times \dfrac{{10}}{{60 \times 60}} = \sqrt 3 , \\
\Rightarrow \dfrac{v}{{6 \times 60}} = \sqrt 3 - \dfrac{1}{{\sqrt 3 }}, \\
\Rightarrow \dfrac{v}{{60 \times 2 \times 3}} = \dfrac{2}{{\sqrt 3 }}, \\
\Rightarrow v = 60 \times 2 \times \sqrt 3 \times 2, \\
\Rightarrow v = 240\sqrt 3 \\
$
Thus the speed of the aeroplane is $240\sqrt 3 $ km/hr.
Note: The question can be solved in this way only if the aeroplane is moving horizontally. If it is moving at any other angle, the triangles formed will be different than this.
Complete step-by-step answer:
In the above figure, C is the initial position of the aeroplane. Its height above the ground is 1 km. Initial angle of elevation is ${60^ \circ }$. Then in triangle ABC, we have:
$
\Rightarrow \tan {60^ \circ } = \dfrac{{BC}}{{AB}}, \\
\Rightarrow \sqrt 3 = \dfrac{1}{{AB}}, \\
\Rightarrow AB = \dfrac{1}{{\sqrt 3 }} .....(i) \\
$
From the figure, $CE = BD$
Let the uniform speed of the aeroplane is $v{\text{ km/hr}}$. It moves horizontally for 10 seconds and reaches point E. We know, Distance $ = $Speed $ \times $time. Applying this, we’ll get:
$ \Rightarrow CE = v \times \dfrac{{10}}{{60 \times 60}}$
From the figure, $CE = BD$. So, we have:
$ \Rightarrow BD = v \times \dfrac{{10}}{{60 \times 60}} .....(ii)$
From the figure, we have:
$ \Rightarrow AD = AB + BD$
Putting the values of AB and BD from equations $(i)$ and $(ii)$ respectively, we’ll get:
$ \Rightarrow AD = \dfrac{1}{{\sqrt 3 }} + v \times \dfrac{{10}}{{60 \times 60}} .....(iii)$
The angle of elevation of the aeroplane now is ${30^ \circ }$. Thus, in triangle ADE, we have:
$
\Rightarrow \tan {30^ \circ } = \dfrac{{DE}}{{AD}}, \\
\Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{1}{{AD}}, \\
\Rightarrow AD = \sqrt 3 \\
$
Now putting the value of AD from equation $(iii)$, we’ll get:
$
\Rightarrow \dfrac{1}{{\sqrt 3 }} + v \times \dfrac{{10}}{{60 \times 60}} = \sqrt 3 , \\
\Rightarrow \dfrac{v}{{6 \times 60}} = \sqrt 3 - \dfrac{1}{{\sqrt 3 }}, \\
\Rightarrow \dfrac{v}{{60 \times 2 \times 3}} = \dfrac{2}{{\sqrt 3 }}, \\
\Rightarrow v = 60 \times 2 \times \sqrt 3 \times 2, \\
\Rightarrow v = 240\sqrt 3 \\
$
Thus the speed of the aeroplane is $240\sqrt 3 $ km/hr.
Note: The question can be solved in this way only if the aeroplane is moving horizontally. If it is moving at any other angle, the triangles formed will be different than this.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

