
Alkaline earth metal form ions of the formula:
A) ${M^ + }$
B) ${M^ - }$
C) ${M^{2 + }}$
D) ${M^{2 - }}$
Answer
573.9k+ views
Hint: Alkaline earth metals are the elements present in the second group (column) of the periodic table. As we know that all elements of a group will have the same number of electrons in the outermost shell, by examining the general electronic configuration of these elements, we will be able to identify how many electrons need to be added/removed in order for them to attain stability and form ions.
Complete step by step solution:
-Alkaline earth metals are placed in group two of the periodic table and are named such because they form alkaline solution (solution having $pH > 7$) when dissolve in water
-While the word Earth refers to the oxides of these metals which are heat resistant
-As the word earth was used previously by scientist for compounds which does not undergo any change when heated using apparatus that were available during those days
-The members of group two are as follow
$Be,Mg,Ca,Sr,Ba,Ra$
-In which $Ra$ is the only radioactive element.
-Now these element have general electronic configuration as $n{s^2}n{p^0}$
-Which indicates they have two electrons in their outermost shell hence these elements can achieve inert gas configuration by either losing two electrons or by gaining six electrons (which is impossible)
-So, they will achieve the inert pair configuration by removing two electrons present in their outermost $s$ orbital as follows
-The removal of both electrons will be done in two steps
-In the first step an amount of energy which will be necessary in order to remove the outermost electron will be provided this energy is known as Ionization Energy or $I{E_1}$
$M \to {M^ + } + {e^ - }$
-For removing the second electron $I{E_2}$ will be provided leading to the formation of ${M^{2 + }}$
${M^ + } \to {M^{2 + }} + {e^ - }$
The net reaction is as follow
$M \to {M^{2 + }} + 2{e^ - }$
Hence the option ‘C’ is the correct solution.
Note:
-Alkaline earth metals are less electropositive (electropositivity is the tendency to give away/push electrons away from themselves) than the alkali metals hence require a higher Ionization energy than the former.
-Also, due to their high value of Ionization energy they are less reactive than alkali metals, which are placed in group one of the periodic table.
Complete step by step solution:
-Alkaline earth metals are placed in group two of the periodic table and are named such because they form alkaline solution (solution having $pH > 7$) when dissolve in water
-While the word Earth refers to the oxides of these metals which are heat resistant
-As the word earth was used previously by scientist for compounds which does not undergo any change when heated using apparatus that were available during those days
-The members of group two are as follow
$Be,Mg,Ca,Sr,Ba,Ra$
-In which $Ra$ is the only radioactive element.
-Now these element have general electronic configuration as $n{s^2}n{p^0}$
-Which indicates they have two electrons in their outermost shell hence these elements can achieve inert gas configuration by either losing two electrons or by gaining six electrons (which is impossible)
-So, they will achieve the inert pair configuration by removing two electrons present in their outermost $s$ orbital as follows
-The removal of both electrons will be done in two steps
-In the first step an amount of energy which will be necessary in order to remove the outermost electron will be provided this energy is known as Ionization Energy or $I{E_1}$
$M \to {M^ + } + {e^ - }$
-For removing the second electron $I{E_2}$ will be provided leading to the formation of ${M^{2 + }}$
${M^ + } \to {M^{2 + }} + {e^ - }$
The net reaction is as follow
$M \to {M^{2 + }} + 2{e^ - }$
Hence the option ‘C’ is the correct solution.
Note:
-Alkaline earth metals are less electropositive (electropositivity is the tendency to give away/push electrons away from themselves) than the alkali metals hence require a higher Ionization energy than the former.
-Also, due to their high value of Ionization energy they are less reactive than alkali metals, which are placed in group one of the periodic table.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

