
After how many decimal places the decimal expansion of \[\dfrac{51}{150}\] will terminate.
In Euclid’s Division Lemma, when \[a=bq+r\] where \[a,b\] are positive integers then what values r can take.
Answer
564.6k+ views
Hint: If the factors of denominator of the given rational number is of form \[{{2}^{n}}{{5}^{m}}\] ,where \[n,m\] are non-negative integers, then the decimal expansion of the rational number is terminating otherwise non terminating recurring.
Complete step-by-step answer:
According to Euclid’s Division Lemma if we have two positive integers a and b, then there exist unique integers \[q\] and \[r\] which satisfies the condition \[a=bq+r\] where \[0~\le \text{ }r\text{ }<\text{ }b\] .
\[\Rightarrow \dfrac{51}{150}\]
\[=\dfrac{3\times 17}{3\times 5\times 2\times 5}\]
\[=\dfrac{17}{{{2}^{1}}\times {{5}^{2}}}\]
\[=\dfrac{17\times 2}{{{2}^{2}}\times {{5}^{2}}}\]
\[=\dfrac{34}{{{(2\times 5)}^{2}}}\]
\[=\dfrac{34}{{{10}^{2}}}\]
\[=\dfrac{34}{100}\]
\[=0.34\]
Hence it will terminate after two places of decimal.
According to Euclid lemma if we have two positive integers a and b, then there exist unique integers \[q\] and \[r\] which satisfies the condition \[a=bq+r\] where \[0~\le \text{ }r\text{ }<\text{ }b\] ,
Hence, the value of r will be between zero and b i.e. \[0~\le \text{ }r\text{ }<\text{ }b\].
Note: The rational number for which the long division terminates after a finite number of steps is known as terminating decimal. The rational number for which the long division does not terminate after any number of steps is known as non-terminating decimal. A repeating decimal or recurring decimal is a decimal representation of a number whose digits are periodic (repeating its values at regular intervals) and the infinitely repeated portion is not zero. A non-terminating, non-repeating decimal is a decimal number that continues endlessly, with no group of digits repeating endlessly. Decimals of this type cannot be represented as fractions, and as a result are irrational numbers.
Complete step-by-step answer:
According to Euclid’s Division Lemma if we have two positive integers a and b, then there exist unique integers \[q\] and \[r\] which satisfies the condition \[a=bq+r\] where \[0~\le \text{ }r\text{ }<\text{ }b\] .
\[\Rightarrow \dfrac{51}{150}\]
\[=\dfrac{3\times 17}{3\times 5\times 2\times 5}\]
\[=\dfrac{17}{{{2}^{1}}\times {{5}^{2}}}\]
\[=\dfrac{17\times 2}{{{2}^{2}}\times {{5}^{2}}}\]
\[=\dfrac{34}{{{(2\times 5)}^{2}}}\]
\[=\dfrac{34}{{{10}^{2}}}\]
\[=\dfrac{34}{100}\]
\[=0.34\]
Hence it will terminate after two places of decimal.
According to Euclid lemma if we have two positive integers a and b, then there exist unique integers \[q\] and \[r\] which satisfies the condition \[a=bq+r\] where \[0~\le \text{ }r\text{ }<\text{ }b\] ,
Hence, the value of r will be between zero and b i.e. \[0~\le \text{ }r\text{ }<\text{ }b\].
Note: The rational number for which the long division terminates after a finite number of steps is known as terminating decimal. The rational number for which the long division does not terminate after any number of steps is known as non-terminating decimal. A repeating decimal or recurring decimal is a decimal representation of a number whose digits are periodic (repeating its values at regular intervals) and the infinitely repeated portion is not zero. A non-terminating, non-repeating decimal is a decimal number that continues endlessly, with no group of digits repeating endlessly. Decimals of this type cannot be represented as fractions, and as a result are irrational numbers.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

