Answer
Verified
406.8k+ views
Hint: Acute angle means the angle whose value is less than ninety degree, for any figure if the angle is given between the sides, and then you can comment on its property of acute or obtuse. In a quadrilateral you should know that the sum of all interior angles are “360” and using this you can find the number of acute angles in a quadrilateral.
Complete step by step solution:
According to the given question let’s see the cases which we can found as per requirement of the question,
Case 1: Let us assume that all the angles of quadrilateral are acute:
Now the maximum acute angle is the angle just before ninety, let us assume a variable “x” for that angle, now on adding with conditions we get:
\[
\Rightarrow x < 90 \\
\Rightarrow x + x + x + x < 90 + 90 + 90 + 90 \\
\Rightarrow x + x + x + x < 360 \\
\]
Here we have taken all four angles as just before the ninety degree and the result proves that four acute angles are not possible.
Case 2: Let us assume that three angles are acute:
Here we are assuming three angles as we previously assumed for the first case and the fourth angle is assumed as “y” which can be any angle greater than ninety degree, on solving we get:
\[
\Rightarrow x < 90\,and\,y > 90 \\
\Rightarrow x + x + x < 90 + 90 + 90\,and\,y > 90 \\
\Rightarrow 3x < 270\,and\,y > 90 \\
\Rightarrow combining\,both\,we\,get\,3x + y > 360\,\sin
ce\,y\,is\,greater\,then\,90\,and\,3x\,is\,just\,less\,then\,270 \\
\]
Hence maximum three acute angles are possible.
Note: The above question can be also solved just by saying that only four equal angles are possible to make a quadrilateral, hence any angle below it cannot make a quadrilateral, which proves maximum only three acute angles are possible to make a quadrilateral.
Complete step by step solution:
According to the given question let’s see the cases which we can found as per requirement of the question,
Case 1: Let us assume that all the angles of quadrilateral are acute:
Now the maximum acute angle is the angle just before ninety, let us assume a variable “x” for that angle, now on adding with conditions we get:
\[
\Rightarrow x < 90 \\
\Rightarrow x + x + x + x < 90 + 90 + 90 + 90 \\
\Rightarrow x + x + x + x < 360 \\
\]
Here we have taken all four angles as just before the ninety degree and the result proves that four acute angles are not possible.
Case 2: Let us assume that three angles are acute:
Here we are assuming three angles as we previously assumed for the first case and the fourth angle is assumed as “y” which can be any angle greater than ninety degree, on solving we get:
\[
\Rightarrow x < 90\,and\,y > 90 \\
\Rightarrow x + x + x < 90 + 90 + 90\,and\,y > 90 \\
\Rightarrow 3x < 270\,and\,y > 90 \\
\Rightarrow combining\,both\,we\,get\,3x + y > 360\,\sin
ce\,y\,is\,greater\,then\,90\,and\,3x\,is\,just\,less\,then\,270 \\
\]
Hence maximum three acute angles are possible.
Note: The above question can be also solved just by saying that only four equal angles are possible to make a quadrilateral, hence any angle below it cannot make a quadrilateral, which proves maximum only three acute angles are possible to make a quadrilateral.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths