 Questions & Answers    Question Answers

# ABCD is a parallelogram in which angle $\angle A = {70^0}$ . Compute angle B,angle C and angle D.   Answer Verified
Hint: Use geometrical theorems related to parallel lines.
Given in the problem ABCD is a parallelogram with angle $\angle A = {70^0}$.
We know that opposite sides of the parallelogram are parallel to each other.
$\Rightarrow AB{\text{ is parallel to }}CD{\text{ (1)}} \\ \Rightarrow AD{\text{ is parallel to B}}C{\text{ (2)}} \\$
Same side Interior angle theorem states that the interior angles formed by a transversal line intersecting two parallel lines are supplementary.
Using the same theorem in parallelogram $ABCD$, we get:
$(1) \Rightarrow {\text{ }}\angle A + \angle D = {180^0}{\text{ and }}\angle B + \angle C = {180^0} \\ (2) \Rightarrow {\text{ }}\angle A + \angle B = {180^0}{\text{ and }}\angle C + \angle D = {180^0} \\$
Using angle $\angle A = {70^0}$ in above equations, we get:
${70^0} + \angle D = {180^0}{\text{ }} \\ \Rightarrow \angle D = {110^0} \\ {70^0} + \angle B = {180^0} \\ \Rightarrow \angle B = {110^0} \\ \angle B + \angle C = {180^0} \\ \Rightarrow \angle C = {70^0} \\$
Hence${\text{ }}\angle B = {110^0}{\text{ , }}\angle C = {70^0}{\text{ , }}\angle D = {110^0}$ .

Note: The same side interior angle theorem is only valid for parallel lines. Geometric properties of parallelogram and parallel lines should be kept in mind while solving problems like this.
Bookmark added to your notes.
View Notes
Perimeter Of A Parallelogram  Perimeter of a Parallelogram  Lines of Symmetry in a Parallelogram  Angle Between a Line and a Plane  Angle Sum Property of a Triangle  Parallelogram  Parallelogram Formula  Parallelogram Law  Area of Parallelogram  Angles of Parallelogram  