Answer
Verified
495.3k+ views
Hint: Use geometrical theorems related to parallel lines.
Given in the problem ABCD is a parallelogram with angle $\angle A = {70^0}$.
We know that opposite sides of the parallelogram are parallel to each other.
$
\Rightarrow AB{\text{ is parallel to }}CD{\text{ (1)}} \\
\Rightarrow AD{\text{ is parallel to B}}C{\text{ (2)}} \\
$
Same side Interior angle theorem states that the interior angles formed by a transversal line intersecting two parallel lines are supplementary.
Using the same theorem in parallelogram $ABCD$, we get:
\[
(1) \Rightarrow {\text{ }}\angle A + \angle D = {180^0}{\text{ and }}\angle B + \angle C = {180^0} \\
(2) \Rightarrow {\text{ }}\angle A + \angle B = {180^0}{\text{ and }}\angle C + \angle D = {180^0} \\
\]
Using angle $\angle A = {70^0}$ in above equations, we get:
\[
{70^0} + \angle D = {180^0}{\text{ }} \\
\Rightarrow \angle D = {110^0} \\
{70^0} + \angle B = {180^0} \\
\Rightarrow \angle B = {110^0} \\
\angle B + \angle C = {180^0} \\
\Rightarrow \angle C = {70^0} \\
\]
Hence\[{\text{ }}\angle B = {110^0}{\text{ , }}\angle C = {70^0}{\text{ , }}\angle D = {110^0}\] .
Note: The same side interior angle theorem is only valid for parallel lines. Geometric properties of parallelogram and parallel lines should be kept in mind while solving problems like this.
Given in the problem ABCD is a parallelogram with angle $\angle A = {70^0}$.
We know that opposite sides of the parallelogram are parallel to each other.
$
\Rightarrow AB{\text{ is parallel to }}CD{\text{ (1)}} \\
\Rightarrow AD{\text{ is parallel to B}}C{\text{ (2)}} \\
$
Same side Interior angle theorem states that the interior angles formed by a transversal line intersecting two parallel lines are supplementary.
Using the same theorem in parallelogram $ABCD$, we get:
\[
(1) \Rightarrow {\text{ }}\angle A + \angle D = {180^0}{\text{ and }}\angle B + \angle C = {180^0} \\
(2) \Rightarrow {\text{ }}\angle A + \angle B = {180^0}{\text{ and }}\angle C + \angle D = {180^0} \\
\]
Using angle $\angle A = {70^0}$ in above equations, we get:
\[
{70^0} + \angle D = {180^0}{\text{ }} \\
\Rightarrow \angle D = {110^0} \\
{70^0} + \angle B = {180^0} \\
\Rightarrow \angle B = {110^0} \\
\angle B + \angle C = {180^0} \\
\Rightarrow \angle C = {70^0} \\
\]
Hence\[{\text{ }}\angle B = {110^0}{\text{ , }}\angle C = {70^0}{\text{ , }}\angle D = {110^0}\] .
Note: The same side interior angle theorem is only valid for parallel lines. Geometric properties of parallelogram and parallel lines should be kept in mind while solving problems like this.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE