
A wire carrying current $I$ has the shape as shown in the adjoining figure. Linear parts of the wire are very long and parallel to the x-axis while the semicircular portion of radius $R$ is lying in the Y-Z axis. Magnetic field at point O is-
(A). $\vec{B}=-\dfrac{{{\mu }_{0}}I}{4\pi R}(\mu \hat{i}\times 2\hat{k})$
(B). $\vec{B}=-\dfrac{{{\mu }_{0}}I}{4\pi R}(\pi \hat{i}+2\hat{k})$
(C). $\vec{B}=\dfrac{{{\mu }_{0}}I}{4\pi R}(\pi \hat{i}-2\hat{k})$
(D). $\vec{B}=\dfrac{{{\mu }_{0}}I}{4\pi R}(\pi \hat{i}+2\hat{k})$

Answer
466.5k+ views
Hint: Magnetic field at point O in space is the resultant of different magnetic fields due to current carrying elements. The magnetic field due to a current carrying element depends on the length, current, distance between the point and element and the angle between the line joining the element and point and the element.
Formula Used:
$B=\dfrac{{{\mu }_{0}}I}{4R}$
$B=\dfrac{{{\mu }_{0}}I}{4\pi R}$
Complete step-by-step solution:
The magnetic field due to different current carrying elements is different which can be derived using Biot Savart’s law of ampere circuit law.
According to the Biot Savart’s law,
When a conductor has current flowing through it, the magnetic field around it is-
$B\propto \dfrac{Idl\sin \theta }{{{r}^{2}}}$
Here,
$I$ is the current flowing through the conductor
$dl$ is the length of the current carrying element
$\theta $ is the angle between the line joining the point and element and the element
$r$ is the distance between the point and element
In space, there are three elements carrying current. The resultant magnetic field vector acting on point O is the sum of all the magnetic field vectors due to different elements in space.
The magnetic field due to a semicircular wire is given by-
$B=\dfrac{{{\mu }_{0}}I}{4R}$
Here, $B$ is the magnetic field
$I$ is the current flowing through the wire
$R$ is the radius of the wire
The right hand thumb rule tells us the direction of the magnetic field
The magnetic field due to due to a long straight current carrying wire at one end is given by-
$B=\dfrac{{{\mu }_{0}}I}{4\pi R}$
Here, $R$ is the distance of the point from the element
The magnetic field at point O due to the different elements is-
$\begin{align}
& \vec{B}={{{\vec{B}}}_{1}}+{{{\vec{B}}}_{2}}+{{{\vec{B}}}_{3}} \\
& \Rightarrow \vec{B}=\dfrac{{{\mu }_{0}}I}{4R}(-\hat{i})+\dfrac{{{\mu }_{0}}I}{4\pi R}(\hat{k})+\dfrac{{{\mu }_{0}}I}{4\pi R}(\hat{k}) \\
& \Rightarrow \vec{B}=\dfrac{{{\mu }_{0}}I}{4\pi R}(-\pi \hat{i}+2\hat{k}) \\
& \therefore \vec{B}=\dfrac{{{\mu }_{0}}I}{4\pi R}(\pi \hat{i}-2\hat{k}) \\
\end{align}$
The resultant magnetic field vector acting on point O is $\dfrac{{{\mu }_{0}}I}{4\pi R}(\pi \hat{i}-2\hat{k})$.
Therefore, the correct option is (C).
Note:
Magnetic field at the axis of a long current carrying wire is zero. According to the right hand thumb rule; for a semicircular wire, if current is denoted by the fingers, direction of field is given by the thumb. For a straight wire, if the thumb is in the direction of current, then fingers represent the direction of the field.
Formula Used:
$B=\dfrac{{{\mu }_{0}}I}{4R}$
$B=\dfrac{{{\mu }_{0}}I}{4\pi R}$
Complete step-by-step solution:
The magnetic field due to different current carrying elements is different which can be derived using Biot Savart’s law of ampere circuit law.
According to the Biot Savart’s law,
When a conductor has current flowing through it, the magnetic field around it is-
$B\propto \dfrac{Idl\sin \theta }{{{r}^{2}}}$
Here,
$I$ is the current flowing through the conductor
$dl$ is the length of the current carrying element
$\theta $ is the angle between the line joining the point and element and the element
$r$ is the distance between the point and element

In space, there are three elements carrying current. The resultant magnetic field vector acting on point O is the sum of all the magnetic field vectors due to different elements in space.
The magnetic field due to a semicircular wire is given by-
$B=\dfrac{{{\mu }_{0}}I}{4R}$
Here, $B$ is the magnetic field
$I$ is the current flowing through the wire
$R$ is the radius of the wire
The right hand thumb rule tells us the direction of the magnetic field
The magnetic field due to due to a long straight current carrying wire at one end is given by-
$B=\dfrac{{{\mu }_{0}}I}{4\pi R}$
Here, $R$ is the distance of the point from the element
The magnetic field at point O due to the different elements is-
$\begin{align}
& \vec{B}={{{\vec{B}}}_{1}}+{{{\vec{B}}}_{2}}+{{{\vec{B}}}_{3}} \\
& \Rightarrow \vec{B}=\dfrac{{{\mu }_{0}}I}{4R}(-\hat{i})+\dfrac{{{\mu }_{0}}I}{4\pi R}(\hat{k})+\dfrac{{{\mu }_{0}}I}{4\pi R}(\hat{k}) \\
& \Rightarrow \vec{B}=\dfrac{{{\mu }_{0}}I}{4\pi R}(-\pi \hat{i}+2\hat{k}) \\
& \therefore \vec{B}=\dfrac{{{\mu }_{0}}I}{4\pi R}(\pi \hat{i}-2\hat{k}) \\
\end{align}$
The resultant magnetic field vector acting on point O is $\dfrac{{{\mu }_{0}}I}{4\pi R}(\pi \hat{i}-2\hat{k})$.
Therefore, the correct option is (C).
Note:
Magnetic field at the axis of a long current carrying wire is zero. According to the right hand thumb rule; for a semicircular wire, if current is denoted by the fingers, direction of field is given by the thumb. For a straight wire, if the thumb is in the direction of current, then fingers represent the direction of the field.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
