Answer
Verified
495.9k+ views
Hint- For solving such questions draw a rough diagram for better understanding. Find out the total volume of earth dug first of all in order to find the volume of embankment and finally height of the embankment.
The shape of the well be cylindrical as shown in the given figure drawn
Given depth ${h_1}$ of the well $ = 14m$
Radius $\left( {{r_1}} \right)$ of the circular end of the well $ = \dfrac{3}{2}m$
Width of the embankment $ = 4m$
As show in the figure the embankment will also be in shape of hollow cylinder so, its outer radius is
$\left( {{r_2}} \right) = 4 + \dfrac{3}{2} = \dfrac{{11}}{2}m$
Let the height of the embankment be ${h_2}$.
So the volume of the soil dug from the well
= volume of the earth used to form the embankment
As, Volume of the soil dug
= volume of the cylinder
\[
= \pi r_1^2{h_1} \\
= \pi \times {\left( {\dfrac{3}{2}} \right)^2} \times 14 \\
= \pi \times \dfrac{9}{4} \times 14 \\
\] ---- (1)
Also volume of the embankment
=volume of hollow cylinder
\[
= \pi \times \left( {r_2^2 - r_1^2} \right) \times {h_2} \\
= \pi \times \left( {{{\left( {\dfrac{{11}}{2}} \right)}^2} - {{\left( {\dfrac{3}{2}} \right)}^2}} \right) \times {h_2} \\
= \pi \times \left( {\left( {\dfrac{{121}}{4}} \right) - \left( {\dfrac{9}{4}} \right)} \right) \times {h_2} \\
= \pi \times \left( {\dfrac{{112}}{4}} \right) \times {h_2} \\
\] --- (2)
From equation (1) and (2), comparing to find the value of ${h_2}$.
$
\Rightarrow \pi \times \left( {\dfrac{9}{4}} \right) \times 14 = \pi \times \left( {\dfrac{{112}}{4}} \right) \times {h_2} \\
\Rightarrow \left( {\dfrac{9}{4}} \right) \times 14 = \left( {\dfrac{{112}}{4}} \right) \times {h_2} \\
\Rightarrow {h_2} = \dfrac{9}{4} \times 14 \times \dfrac{4}{{112}} \\
\Rightarrow {h_2} = \dfrac{9}{8} \\
\Rightarrow {h_2} = 1.125m \\
$
Hence the height of the embankment will be $1.125m$.
Note- Figures are the most important part of questions containing these types of practical problems. Formulas of volume of cylinder, hollow cylinder and others are very useful and must be remembered. In order to solve problems of real life or practical type, try to relate it with some geometrical figures in order to solve the problem easily and fast.
The shape of the well be cylindrical as shown in the given figure drawn
Given depth ${h_1}$ of the well $ = 14m$
Radius $\left( {{r_1}} \right)$ of the circular end of the well $ = \dfrac{3}{2}m$
Width of the embankment $ = 4m$
As show in the figure the embankment will also be in shape of hollow cylinder so, its outer radius is
$\left( {{r_2}} \right) = 4 + \dfrac{3}{2} = \dfrac{{11}}{2}m$
Let the height of the embankment be ${h_2}$.
So the volume of the soil dug from the well
= volume of the earth used to form the embankment
As, Volume of the soil dug
= volume of the cylinder
\[
= \pi r_1^2{h_1} \\
= \pi \times {\left( {\dfrac{3}{2}} \right)^2} \times 14 \\
= \pi \times \dfrac{9}{4} \times 14 \\
\] ---- (1)
Also volume of the embankment
=volume of hollow cylinder
\[
= \pi \times \left( {r_2^2 - r_1^2} \right) \times {h_2} \\
= \pi \times \left( {{{\left( {\dfrac{{11}}{2}} \right)}^2} - {{\left( {\dfrac{3}{2}} \right)}^2}} \right) \times {h_2} \\
= \pi \times \left( {\left( {\dfrac{{121}}{4}} \right) - \left( {\dfrac{9}{4}} \right)} \right) \times {h_2} \\
= \pi \times \left( {\dfrac{{112}}{4}} \right) \times {h_2} \\
\] --- (2)
From equation (1) and (2), comparing to find the value of ${h_2}$.
$
\Rightarrow \pi \times \left( {\dfrac{9}{4}} \right) \times 14 = \pi \times \left( {\dfrac{{112}}{4}} \right) \times {h_2} \\
\Rightarrow \left( {\dfrac{9}{4}} \right) \times 14 = \left( {\dfrac{{112}}{4}} \right) \times {h_2} \\
\Rightarrow {h_2} = \dfrac{9}{4} \times 14 \times \dfrac{4}{{112}} \\
\Rightarrow {h_2} = \dfrac{9}{8} \\
\Rightarrow {h_2} = 1.125m \\
$
Hence the height of the embankment will be $1.125m$.
Note- Figures are the most important part of questions containing these types of practical problems. Formulas of volume of cylinder, hollow cylinder and others are very useful and must be remembered. In order to solve problems of real life or practical type, try to relate it with some geometrical figures in order to solve the problem easily and fast.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it