Answer
Verified
437.1k+ views
Hint: To solve this question, we need to use the Bernoulli’s theorem to get the horizontal velocity of water at the point from where it falls. Then, using the second kinematic equation of motion, we can determine the time of flight of water. Finally, multiplying the time of flight with the horizontal velocity will give us the expression for $ x $ which can be maximised to get the final answer.
Formula used: The formula used for solving this question is given by
$ s = ut + \dfrac{1}{2}a{t^2} $ , here $ s $ is the displacement covered by a particle in $ t $ time with an initial velocity of $ u $ and an acceleration of $ a $ .
Complete step-by-step solution
We label two points A and B in the given figure as shown below.
Now, we apply the Bernoulli’s theorem at points A and B to get
$ {P_A} + \rho g{h_A} + \dfrac{1}{2}\rho v_A^2 = {P_B} + \rho g{h_B} + \dfrac{1}{2}\rho v_B^2 $
Now, the velocity of the water particles at point A will be zero. Also, the point A is at the top. So the pressure must be equal to the atmospheric pressure, $ {P_0} $ . Substituting $ {v_A} = 0 $ and $ {P_A} = {P_0} $ in the above equation we get
$ {P_0} + \rho g{h_A} = {P_0} + \rho g{h_B} + \dfrac{1}{2}\rho v_B^2 $
$ \Rightarrow \dfrac{1}{2}\rho v_B^2 = \rho g\left( {{h_B} - {h_A}} \right) $
From the above figure, we have $ {h_B} - {h_A} = h $ . So we get
$ \dfrac{1}{2}\rho v_B^2 = \rho gh $
Cancelling $ \rho $ from both the sides, we get
$ \dfrac{1}{2}v_B^2 = gh $
$ \Rightarrow {v_B} = \sqrt {2gh} $ ...................(1)
This is the initial horizontal velocity of the water with which the water falls. But the initial vertical velocity of the water will be equal to zero. From the above figure, the vertical displacement covered by the water as it falls on the ground is
$ y = \left( {4 - h} \right)m $
Now, from the second kinematic equation of motion we have
$ y = ut + \dfrac{1}{2}a{t^2} $
Substituting $ u = 0 $ , $ y = \left( {4 - h} \right)m $ and $ a = g $ in the above equation, we get
$ 4 - h = \dfrac{1}{2}g{t^2} $
$ \Rightarrow t = \sqrt {2g\left( {4 - h} \right)} $ ...................(2)
Now, since the only force which acts on the water as it falls down is the gravitational force, which acts in the vertically downward direction, so the horizontal velocity of the water will remain constant. So the horizontal range covered by the water is given by
$ x = {v_B}t $
Putting (1) and (2) in the above equation, we get
$ x = \sqrt {2gh} \times \sqrt {2g\left( {4 - h} \right)} $
$ \Rightarrow x = 2g\sqrt {h\left( {4 - h} \right)} $
Now, $ x $ will be greatest when the expression inside the square root is maximum. So we have to maximise this expression, which is given by
$ f\left( h \right) = h\left( {4 - h} \right) $ ...................(3)
For maximising $ f\left( h \right) $ , we put
$ f'\left( h \right) = 0 $
$ \Rightarrow 4 - h - h = 0 $
On solving the above equation, we get
$ h = 2m $
Hence, the distance covered by water is maximum when $ h $ is equal to $ 2m $ .
Note
Make sure to calculate the height covered by the water from the ground, before substituting it in the second equation of motion. Also, there is no need to maximize the expression of $ x $ in terms of $ h $ for maximizing it, as differentiating it will make it complex.
Formula used: The formula used for solving this question is given by
$ s = ut + \dfrac{1}{2}a{t^2} $ , here $ s $ is the displacement covered by a particle in $ t $ time with an initial velocity of $ u $ and an acceleration of $ a $ .
Complete step-by-step solution
We label two points A and B in the given figure as shown below.
Now, we apply the Bernoulli’s theorem at points A and B to get
$ {P_A} + \rho g{h_A} + \dfrac{1}{2}\rho v_A^2 = {P_B} + \rho g{h_B} + \dfrac{1}{2}\rho v_B^2 $
Now, the velocity of the water particles at point A will be zero. Also, the point A is at the top. So the pressure must be equal to the atmospheric pressure, $ {P_0} $ . Substituting $ {v_A} = 0 $ and $ {P_A} = {P_0} $ in the above equation we get
$ {P_0} + \rho g{h_A} = {P_0} + \rho g{h_B} + \dfrac{1}{2}\rho v_B^2 $
$ \Rightarrow \dfrac{1}{2}\rho v_B^2 = \rho g\left( {{h_B} - {h_A}} \right) $
From the above figure, we have $ {h_B} - {h_A} = h $ . So we get
$ \dfrac{1}{2}\rho v_B^2 = \rho gh $
Cancelling $ \rho $ from both the sides, we get
$ \dfrac{1}{2}v_B^2 = gh $
$ \Rightarrow {v_B} = \sqrt {2gh} $ ...................(1)
This is the initial horizontal velocity of the water with which the water falls. But the initial vertical velocity of the water will be equal to zero. From the above figure, the vertical displacement covered by the water as it falls on the ground is
$ y = \left( {4 - h} \right)m $
Now, from the second kinematic equation of motion we have
$ y = ut + \dfrac{1}{2}a{t^2} $
Substituting $ u = 0 $ , $ y = \left( {4 - h} \right)m $ and $ a = g $ in the above equation, we get
$ 4 - h = \dfrac{1}{2}g{t^2} $
$ \Rightarrow t = \sqrt {2g\left( {4 - h} \right)} $ ...................(2)
Now, since the only force which acts on the water as it falls down is the gravitational force, which acts in the vertically downward direction, so the horizontal velocity of the water will remain constant. So the horizontal range covered by the water is given by
$ x = {v_B}t $
Putting (1) and (2) in the above equation, we get
$ x = \sqrt {2gh} \times \sqrt {2g\left( {4 - h} \right)} $
$ \Rightarrow x = 2g\sqrt {h\left( {4 - h} \right)} $
Now, $ x $ will be greatest when the expression inside the square root is maximum. So we have to maximise this expression, which is given by
$ f\left( h \right) = h\left( {4 - h} \right) $ ...................(3)
For maximising $ f\left( h \right) $ , we put
$ f'\left( h \right) = 0 $
$ \Rightarrow 4 - h - h = 0 $
On solving the above equation, we get
$ h = 2m $
Hence, the distance covered by water is maximum when $ h $ is equal to $ 2m $ .
Note
Make sure to calculate the height covered by the water from the ground, before substituting it in the second equation of motion. Also, there is no need to maximize the expression of $ x $ in terms of $ h $ for maximizing it, as differentiating it will make it complex.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE