
A vessel of volume \[{V_0}\]contains an ideal gas at pressure \[{P_0}\]and temperature \[T\]. Gas is continuously pumped out of this vessel at a constant volume-rate \[\dfrac{{dV}}{{dt}} = r\]keeping the temperature constant, The pressure inside the vessel. Find (a) the pressure of the gas as a function of time,(b) the time taken before half the original gas is pumped out.
Answer
458.1k+ views
Hint: It is given that an ideal gas is pumped out of a vessel, which has a volume \[{V_0}\] at the constant rate of \[\dfrac{{dV}}{{dt}} = r\]. Use the ideal gas equation and apply the boundary conditions to find the relationship between pressure and time and use that to find the time taken before half the gas is out.
Complete step by step answer:
Let us assume that the volume of the vessel is \[{V_0}\] and the ideal gas is at a pressure \[{P_0}\]at a temperature \[T\]. The initial conditions are given using ideal gas law equation which states,
\[PV = nRT\]
From this equation we know that Pressure and volume are constant. Hence on differentiating on both sides we get ,
\[ \Rightarrow PdV + VdP = 0\]
From the given statement we know that,
\[\dfrac{{dV}}{{dt}} = r\]
Rearranging this , we get,
\[dV = rdt\]
Substituting this in equation , we get
\[ \Rightarrow P(r \times dt) + VdP = 0\]
\[ \Rightarrow P(r \times dt) = - VdP\]
Now, the gas is said to occupy the volume of the vessel, substituting this , we get
\[ \Rightarrow rdt = - {V_0}\dfrac{{dP}}{P}\]
\[ \Rightarrow - \dfrac{r}{{{V_0}}}dt = \dfrac{{dP}}{P}\]
Integrating on both sides , we get
\[ \Rightarrow - \dfrac{r}{{{V_0}}}\int {} dt = \int {\dfrac{{dP}}{P}} \]
On applying laws of integration we get,
\[ \Rightarrow - \dfrac{r}{{{V_0}}}t + c = \ln (P)\]-------(1)
Now, initially when the gas is inside the vessel, the pressure of the gas is \[{P_0}\] and \[t = 0\]. Substituting this
\[ \Rightarrow - \dfrac{r}{{{V_0}}}(0) + c = \ln ({P_0})\]
\[ \Rightarrow c = \ln ({P_0})\]
Substituting c in equation 1 , we get,
\[ \Rightarrow - \dfrac{r}{{{V_0}}}t + \ln ({P_0}) = \ln (P)\]
Removing ln on both sides , we get,
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}} = \dfrac{P}{{{P_0}}}\] (using property \[\ln (A) - \ln (B) = \ln (\dfrac{A}{B})\])
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}}{P_0} = P\]
Now, when half the volume of the gas is pumped out, we know that
\[ \Rightarrow \dfrac{{{P_0}{V_0}}}{{P{V_0}}} = \dfrac{{nRT}}{{\dfrac{{nRT}}{2}}}\], where the numerator represent the initial conditions and denominator represent final conditions when the gas is let out.
Re-arranging this , we get,
\[ \Rightarrow P = \dfrac{{{P_0}}}{2}\]
Substituting this in the general pressure relation , we get,
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}}{P_0} = \dfrac{{{P_0}}}{2}\]
Cancelling out the common terms, we get
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}} = \dfrac{1}{2}\]
Removing the exponential term, we get,
\[ \Rightarrow - \dfrac{r}{{{V_0}}}t = \ln (\dfrac{1}{2})\]
On rearranging this we get,
\[ \Rightarrow t = \dfrac{{{V_0}\ln 2}}{r}\]
Thus the relation has been established between pressure as a function of time.
Note: Ideal gas is a theoretically made up gas which is composed of particles that don’t have intermolecular forces of attraction or repulsion between them under applied pressure and volume. This is considered to be the ideal state of the gas.
Complete step by step answer:
Let us assume that the volume of the vessel is \[{V_0}\] and the ideal gas is at a pressure \[{P_0}\]at a temperature \[T\]. The initial conditions are given using ideal gas law equation which states,
\[PV = nRT\]
From this equation we know that Pressure and volume are constant. Hence on differentiating on both sides we get ,
\[ \Rightarrow PdV + VdP = 0\]
From the given statement we know that,
\[\dfrac{{dV}}{{dt}} = r\]
Rearranging this , we get,
\[dV = rdt\]
Substituting this in equation , we get
\[ \Rightarrow P(r \times dt) + VdP = 0\]
\[ \Rightarrow P(r \times dt) = - VdP\]
Now, the gas is said to occupy the volume of the vessel, substituting this , we get
\[ \Rightarrow rdt = - {V_0}\dfrac{{dP}}{P}\]
\[ \Rightarrow - \dfrac{r}{{{V_0}}}dt = \dfrac{{dP}}{P}\]
Integrating on both sides , we get
\[ \Rightarrow - \dfrac{r}{{{V_0}}}\int {} dt = \int {\dfrac{{dP}}{P}} \]
On applying laws of integration we get,
\[ \Rightarrow - \dfrac{r}{{{V_0}}}t + c = \ln (P)\]-------(1)
Now, initially when the gas is inside the vessel, the pressure of the gas is \[{P_0}\] and \[t = 0\]. Substituting this
\[ \Rightarrow - \dfrac{r}{{{V_0}}}(0) + c = \ln ({P_0})\]
\[ \Rightarrow c = \ln ({P_0})\]
Substituting c in equation 1 , we get,
\[ \Rightarrow - \dfrac{r}{{{V_0}}}t + \ln ({P_0}) = \ln (P)\]
Removing ln on both sides , we get,
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}} = \dfrac{P}{{{P_0}}}\] (using property \[\ln (A) - \ln (B) = \ln (\dfrac{A}{B})\])
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}}{P_0} = P\]
Now, when half the volume of the gas is pumped out, we know that
\[ \Rightarrow \dfrac{{{P_0}{V_0}}}{{P{V_0}}} = \dfrac{{nRT}}{{\dfrac{{nRT}}{2}}}\], where the numerator represent the initial conditions and denominator represent final conditions when the gas is let out.
Re-arranging this , we get,
\[ \Rightarrow P = \dfrac{{{P_0}}}{2}\]
Substituting this in the general pressure relation , we get,
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}}{P_0} = \dfrac{{{P_0}}}{2}\]
Cancelling out the common terms, we get
\[ \Rightarrow {e^{ - \dfrac{r}{{{V_0}}}t}} = \dfrac{1}{2}\]
Removing the exponential term, we get,
\[ \Rightarrow - \dfrac{r}{{{V_0}}}t = \ln (\dfrac{1}{2})\]
On rearranging this we get,
\[ \Rightarrow t = \dfrac{{{V_0}\ln 2}}{r}\]
Thus the relation has been established between pressure as a function of time.
Note: Ideal gas is a theoretically made up gas which is composed of particles that don’t have intermolecular forces of attraction or repulsion between them under applied pressure and volume. This is considered to be the ideal state of the gas.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
