A vessel is in the form of a hemispherical bowl surmounted by a hollow cylinder of the same diameter. The diameter of the hemispherical bowl is 14cm and the total height of the vessel is 13 cm. Find the total surface area of the vessel. $\left[ {{\text{Use }}\pi {\text{ = }}\dfrac{{22}}{7}} \right]$
Last updated date: 24th Mar 2023
•
Total views: 308.1k
•
Views today: 6.85k
Answer
308.1k+ views
Hint: Curved surface area of the cylinder is $2\pi rh$, and the Curved surface area of hemispherical bowl is $2\pi {r^2}$ use these formulas to reach the answer.
It is given that the diameter of the hemispherical bowl is equal to the diameter of the hollow cylinder which is 14 cm.
So the radius of the hemispherical bowl is also equal to the radius of hollow cylinder $ = \dfrac{{{\text{Diameter}}}}{2} = \dfrac{{14}}{2} = 7cm$
So, the height $\left( h \right)$ of the cylindrical portion = total height – radius of bowl
Total height of the vessel is 13 cm. (given)
$ \Rightarrow \left( h \right) = 13 - 7 = 6cm$
Now we know that the curved surface area of cylinder ${S_c} = 2\pi rh$
$ \Rightarrow {S_c} = 2 \times \dfrac{{22}}{7} \times 7 \times 6 = 264c{m^2}$
And we also know that the curved surface area of hemispherical portion ${S_b} = 2\pi {r^2} = 2 \times \dfrac{{22}}{7} \times {7^2} = 308c{m^2}$
So, the total surface area of the vessel is ${S_v} = {S_c} + {S_b}$
$ \Rightarrow {S_v} = 308 + 264 = 572c{m^2}$
So, this is the required surface area of the vessel.
Note: In such types of questions always remember the formula of curved surface area of cylinder and hemispherical bowl, then substitute the given values in these formulas and calculate the value of surface areas then add these surface areas to get the total surface area of the vessel, which is the required answer.

It is given that the diameter of the hemispherical bowl is equal to the diameter of the hollow cylinder which is 14 cm.
So the radius of the hemispherical bowl is also equal to the radius of hollow cylinder $ = \dfrac{{{\text{Diameter}}}}{2} = \dfrac{{14}}{2} = 7cm$
So, the height $\left( h \right)$ of the cylindrical portion = total height – radius of bowl
Total height of the vessel is 13 cm. (given)
$ \Rightarrow \left( h \right) = 13 - 7 = 6cm$
Now we know that the curved surface area of cylinder ${S_c} = 2\pi rh$
$ \Rightarrow {S_c} = 2 \times \dfrac{{22}}{7} \times 7 \times 6 = 264c{m^2}$
And we also know that the curved surface area of hemispherical portion ${S_b} = 2\pi {r^2} = 2 \times \dfrac{{22}}{7} \times {7^2} = 308c{m^2}$
So, the total surface area of the vessel is ${S_v} = {S_c} + {S_b}$
$ \Rightarrow {S_v} = 308 + 264 = 572c{m^2}$
So, this is the required surface area of the vessel.
Note: In such types of questions always remember the formula of curved surface area of cylinder and hemispherical bowl, then substitute the given values in these formulas and calculate the value of surface areas then add these surface areas to get the total surface area of the vessel, which is the required answer.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
