
A vehicle moving with constant acceleration from A to B in a straight line AB, has velocities \[u\] and $v$ at A and B respectively. C is the midpoint of AB. If the time taken to travel from A to C is twice the time to travel from C to B then the velocity of the vehicle $v$ at B is:
A. $5u$
B. $6u$
C. $7u$
D. $8u$
Answer
577.8k+ views
Hint: When acceleration is constant in a straight line motion, time taken to reach from initial to final point is given by $t = \dfrac{{v - u}}{a}$ where $v$ is the final velocity, \[u\] is the initial velocity and $a$ is the acceleration.
We can also apply the formula ${v^2} - {u^2} = 2as$ where $v$ is the final velocity, \[u\] is the initial velocity, $a$ is the acceleration and $s$ is the displacement from initial to final point.
Complete step by step solution:
As given in the question the vehicle has velocities \[u\] and $v$ at $A$ and $B$ respectively and the time taken to travel from $A$ to $C$ is twice the time to travel from $C$ to $B$. The acceleration is constant throughout the motion.
So, we will first find the relation between the time taken to travel from $A$ to $C$ and time to travel from $C$ to $B$.
Let the velocity of the vehicle be ${v_c}$ at point $C$, the constant acceleration throughout the motion be $a$ and total displacement AB is $s$.
As we know, when acceleration is constant in a straight line motion, time taken to reach from initial to the final point is given by $t = \dfrac{{v - u}}{a}$ where $v$ is the final velocity, \[u\] is the initial velocity, and $a$ is the acceleration.
So, time taken by the vehicle from $A$ to $C$, ${t_{AC}} = \dfrac{{{v_c} - u}}{a}$ and time taken by the vehicle from $C$ to $B$, ${t_{CB}} = \dfrac{{v - {v_c}}}{a}$ .
Now as given in the question, ${t_{AC}} = 2{t_{CB}}$
Which is written as, $\dfrac{{{v_c} - u}}{a} = 2\dfrac{{\left( {v - {v_c}} \right)}}{a}$
On solving the equation further, ${v_c} - u = 2v - 2{v_c}$
On simplifying we have, ${v_c} = \dfrac{{2v + u}}{3}$ …(i)
Now, we can also apply the formula ${v^2} - {u^2} = 2as$ where $v$ is the final velocity, \[u\] is the initial velocity , $a$ is the acceleration and $s$ is the displacement from initial to final point.
As, $C$ is the mid point of $AB$, so, $AC = \dfrac{s}{2}$ .
So, from $A$ to $C$, $v_c^2 - {u^2} = 2 \times a \times \dfrac{s}{2} = as$ …(ii)
Now, from $A$ to $B$, ${v^2} - {u^2} = 2as$
Substituting the value of $as$ from equation (ii), we get,
${v^2} - {u^2} = 2\left( {v_c^2 - {u^2}} \right) = 2v_c^2 - 2{u^2}$
On solving further we have, ${v^2} = 2v_c^2 - {u^2}$
Now, substituting the ${v_c}$ from equation (i) we have,
\[{v^2} = 2{\left( {\dfrac{{2v + u}}{3}} \right)^2} - {u^2}\]
On simplification we get,
$
{v^2} - 8uv + 7{u^2} = 0 \\
{v^2} - uv - 7uv + 7{u^2} = 0 \\
$
On further solving the equation we have,
$\left( {v - u} \right)\left( {v - 7u} \right) = 0$
So, $v = u,7u$
But $v > u$ (as vehicle is in constant acceleration)
So, $v = 7u$
$\therefore$The required velocity of the vehicle is $7u$. Hence, option (C) is the correct answer.
Note:
Carefully substitute the initial and final velocities in the equations $t = \dfrac{{v - u}}{a}$ and ${v^2} - {u^2} = 2as$ and always remember that these formulae are applicable only when the particle is moving with a constant acceleration in a straight line.
We can also apply the formula ${v^2} - {u^2} = 2as$ where $v$ is the final velocity, \[u\] is the initial velocity, $a$ is the acceleration and $s$ is the displacement from initial to final point.
Complete step by step solution:
As given in the question the vehicle has velocities \[u\] and $v$ at $A$ and $B$ respectively and the time taken to travel from $A$ to $C$ is twice the time to travel from $C$ to $B$. The acceleration is constant throughout the motion.
So, we will first find the relation between the time taken to travel from $A$ to $C$ and time to travel from $C$ to $B$.
Let the velocity of the vehicle be ${v_c}$ at point $C$, the constant acceleration throughout the motion be $a$ and total displacement AB is $s$.
As we know, when acceleration is constant in a straight line motion, time taken to reach from initial to the final point is given by $t = \dfrac{{v - u}}{a}$ where $v$ is the final velocity, \[u\] is the initial velocity, and $a$ is the acceleration.
So, time taken by the vehicle from $A$ to $C$, ${t_{AC}} = \dfrac{{{v_c} - u}}{a}$ and time taken by the vehicle from $C$ to $B$, ${t_{CB}} = \dfrac{{v - {v_c}}}{a}$ .
Now as given in the question, ${t_{AC}} = 2{t_{CB}}$
Which is written as, $\dfrac{{{v_c} - u}}{a} = 2\dfrac{{\left( {v - {v_c}} \right)}}{a}$
On solving the equation further, ${v_c} - u = 2v - 2{v_c}$
On simplifying we have, ${v_c} = \dfrac{{2v + u}}{3}$ …(i)
Now, we can also apply the formula ${v^2} - {u^2} = 2as$ where $v$ is the final velocity, \[u\] is the initial velocity , $a$ is the acceleration and $s$ is the displacement from initial to final point.
As, $C$ is the mid point of $AB$, so, $AC = \dfrac{s}{2}$ .
So, from $A$ to $C$, $v_c^2 - {u^2} = 2 \times a \times \dfrac{s}{2} = as$ …(ii)
Now, from $A$ to $B$, ${v^2} - {u^2} = 2as$
Substituting the value of $as$ from equation (ii), we get,
${v^2} - {u^2} = 2\left( {v_c^2 - {u^2}} \right) = 2v_c^2 - 2{u^2}$
On solving further we have, ${v^2} = 2v_c^2 - {u^2}$
Now, substituting the ${v_c}$ from equation (i) we have,
\[{v^2} = 2{\left( {\dfrac{{2v + u}}{3}} \right)^2} - {u^2}\]
On simplification we get,
$
{v^2} - 8uv + 7{u^2} = 0 \\
{v^2} - uv - 7uv + 7{u^2} = 0 \\
$
On further solving the equation we have,
$\left( {v - u} \right)\left( {v - 7u} \right) = 0$
So, $v = u,7u$
But $v > u$ (as vehicle is in constant acceleration)
So, $v = 7u$
$\therefore$The required velocity of the vehicle is $7u$. Hence, option (C) is the correct answer.
Note:
Carefully substitute the initial and final velocities in the equations $t = \dfrac{{v - u}}{a}$ and ${v^2} - {u^2} = 2as$ and always remember that these formulae are applicable only when the particle is moving with a constant acceleration in a straight line.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

