Answer
Verified
428.7k+ views
Hint: The Young’s modulus of the material is defined as the ratio of the stress to the strain. The stress will reduce as it moves away from the point where the force is applied. Then find the force at the point of elongation. Then the stress can be calculated by the ratio of a new force to the area. Then substitute the force calculated and then the elongation can be calculated from the equation of young’s modulus.
Complete step-by-step solution
The Young’s modulus of the material is defined as the ratio of the stress to the strain. Here it is due to the longitudinal stress and longitudinal strain.
By the application of an external force the rod can accelerate by,
$a=\dfrac{F}{m}$
The stress will reduce as it moves away from the point where the force is applied. As a result, the stress decreases as it moves away from the end where force is applied.
To find out the elongation, we have to consider a small element for length dx at a distance x from the free end of the rod.
Then,
$\begin{align}
& F'=\dfrac{Fx}{L} \\
& \\
\end{align}$
Therefore stress can be calculated as,
$\sigma =\dfrac{F'}{A}$
$\Rightarrow \sigma =\dfrac{F}{A}\dfrac{x}{L}$
Thus the elongation produced is,
$d\delta =\dfrac{F}{YAL}xdx$
Then total elongation becomes,
$\delta =\dfrac{F}{YAL}\int\limits_{0}^{1}{xdx}$
$\Rightarrow \delta =\dfrac{F}{YAL}\left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{1}$
$\therefore \delta =\dfrac{1}{2}\dfrac{Fl}{YA}$
Note: The Young’s modulus is a mechanical property that defines the tensile property of a material. The Young’s modulus has the same unit of stress because the strain is a dimensionless quantity. When a force is applied to a solid material the material may either get elongated or compressed as the result of the applied force.
Complete step-by-step solution
The Young’s modulus of the material is defined as the ratio of the stress to the strain. Here it is due to the longitudinal stress and longitudinal strain.
By the application of an external force the rod can accelerate by,
$a=\dfrac{F}{m}$
The stress will reduce as it moves away from the point where the force is applied. As a result, the stress decreases as it moves away from the end where force is applied.
To find out the elongation, we have to consider a small element for length dx at a distance x from the free end of the rod.
Then,
$\begin{align}
& F'=\dfrac{Fx}{L} \\
& \\
\end{align}$
Therefore stress can be calculated as,
$\sigma =\dfrac{F'}{A}$
$\Rightarrow \sigma =\dfrac{F}{A}\dfrac{x}{L}$
Thus the elongation produced is,
$d\delta =\dfrac{F}{YAL}xdx$
Then total elongation becomes,
$\delta =\dfrac{F}{YAL}\int\limits_{0}^{1}{xdx}$
$\Rightarrow \delta =\dfrac{F}{YAL}\left[ \dfrac{{{x}^{2}}}{2} \right]_{0}^{1}$
$\therefore \delta =\dfrac{1}{2}\dfrac{Fl}{YA}$
Note: The Young’s modulus is a mechanical property that defines the tensile property of a material. The Young’s modulus has the same unit of stress because the strain is a dimensionless quantity. When a force is applied to a solid material the material may either get elongated or compressed as the result of the applied force.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths