Answer
Verified
495k+ views
Hint: - Use, ${\text{Speed}} = \dfrac{{{\text{Distance}}}}{{{\text{time}}}}$
Let the speed of the train be $x{\text{ }}km/hr$.
And the time to cover $360km $be $t{\text{ }} hr$.
As you know,${\text{Speed}} = \dfrac{{{\text{Distance}}}}{{{\text{time}}}}$
$\therefore x = \dfrac{{360}}{t}km/hr............\left( 1 \right)$
It is also given that if speed is increased by $5km/hr$, the time to cover $360km $is $1hr$ less than the previous time.
$\therefore x + 5 = \dfrac{{360}}{{t - 1}}km/hr.............\left( 2 \right)$
From equation (1) and (2)
$
xt = \left( {x + 5} \right)\left( {t - 1} \right) \\
\therefore xt = xt - x + 5t - 5 \\
\therefore x - 5t + 5 = 0..............\left( 3 \right) \\
$
From equation (1) $t = \dfrac{{360}}{x}$
Substitute this value in equation (3)
$
x - 5\left( {\dfrac{{360}}{x}} \right) + 5 = 0 \\
{x^2} + 5x - 1800 = 0 \\
$
Now, factorize the above equation
$
{x^2} + 45x - 40x - 1800 = 0 \\
x\left( {x + 45} \right) - 40\left( {x + 45} \right) = 0 \\
\left( {x + 45} \right)\left( {x - 40} \right) = 0 \\
\left( {x + 45} \right) = 0,{\text{ }}\left( {x - 40} \right) = 0 \\
\therefore x = - 45,{\text{ }}x = 40 \\
$
Speed cannot be negative
So the required speed is $40{\text{ }}km/hr$
Note: -In such types of questions the key concept we have to remember is that always remember the formula of speed, time, and distance, then formulate the equations using this formula and the given conditions, then simplify the equations using substitution, then we will get the required answer.
Let the speed of the train be $x{\text{ }}km/hr$.
And the time to cover $360km $be $t{\text{ }} hr$.
As you know,${\text{Speed}} = \dfrac{{{\text{Distance}}}}{{{\text{time}}}}$
$\therefore x = \dfrac{{360}}{t}km/hr............\left( 1 \right)$
It is also given that if speed is increased by $5km/hr$, the time to cover $360km $is $1hr$ less than the previous time.
$\therefore x + 5 = \dfrac{{360}}{{t - 1}}km/hr.............\left( 2 \right)$
From equation (1) and (2)
$
xt = \left( {x + 5} \right)\left( {t - 1} \right) \\
\therefore xt = xt - x + 5t - 5 \\
\therefore x - 5t + 5 = 0..............\left( 3 \right) \\
$
From equation (1) $t = \dfrac{{360}}{x}$
Substitute this value in equation (3)
$
x - 5\left( {\dfrac{{360}}{x}} \right) + 5 = 0 \\
{x^2} + 5x - 1800 = 0 \\
$
Now, factorize the above equation
$
{x^2} + 45x - 40x - 1800 = 0 \\
x\left( {x + 45} \right) - 40\left( {x + 45} \right) = 0 \\
\left( {x + 45} \right)\left( {x - 40} \right) = 0 \\
\left( {x + 45} \right) = 0,{\text{ }}\left( {x - 40} \right) = 0 \\
\therefore x = - 45,{\text{ }}x = 40 \\
$
Speed cannot be negative
So the required speed is $40{\text{ }}km/hr$
Note: -In such types of questions the key concept we have to remember is that always remember the formula of speed, time, and distance, then formulate the equations using this formula and the given conditions, then simplify the equations using substitution, then we will get the required answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE