
A thin copper wire of $l$ length increases in length by $1\% $ when heated from $0^\circ {\text{C}}$ to $100^\circ {\text{C}}$, if a thin copper plate of area $2l \times l$ is heated from $0^\circ {\text{C}}$ to $100^\circ {\text{C}}$, the percentage increase in its area will be.
A) $1\% $
B) $2\% $
C) $3\% $
D) $4\% $
Answer
558.3k+ views
Hint: In this question, use the concept of the coefficient of the thermal expansion of the material that is when a solid material is heated or cooled, then the length of that object increases or decreases which depends on the coefficient of thermal expansion of the material.
Complete step by step answer:
As we know that in the Linear thermal expansion, when a solid material heated or cooled, then the change in length of solid material depends on the coefficient of thermal expansion of the material, the temperature difference, and the initial length of the object that is,
$\Delta L = \alpha L\Delta T$
Here, $\alpha $ is the thermal expansion of the solid material, $L$is the original length of the solid material, and $\Delta T$ is the change in temperature of the material.
Now we calculate the change in temperature of the copper wire when heated.
$
\Delta T = 100\;^\circ {\text{C}} - 0\;^\circ {\text{C}} \\
\Rightarrow \Delta T = 100\;^\circ {\text{C}} \\
$
So, the change in the temperature is $100\;^\circ {\text{C}}$.
Now, we substitute the value of the change in the length of the wire that is $\dfrac{{\Delta L}}{L} = \dfrac{1}{{100}}$ and the value of the change in the temperature in the thermal expansion expression to calculate the coefficient of thermal expansion of the material as,
$\Delta L = \alpha L\left( {100} \right)$
Rearrange the equation as,
\[ \Rightarrow \dfrac{{\Delta L}}{L} = \alpha 100\]
we substitute the value of the change in the length of the wire that is $\dfrac{{\Delta L}}{L} = \dfrac{1}{{100}}$ as,
\[ \Rightarrow \dfrac{1}{{100}} = \alpha 100\]
After calculation we get,
\[ \Rightarrow \alpha = {10^{ - 4}}\,{^\circ C}\]
So, the value of the coefficient of thermal expansion is \[{10^{ - 4}}\,{^\circ C}\].
In Area Thermal Expansion, when a solid material heated or cooled, then the change in the area of solid material is,
$\Delta A = \beta A\Delta T$
Here, $\beta $ is the thermal expansion of the solid material, $A$is the original area of the solid material, and $\Delta T$ is the change in temperature of the material.
As we know that the plate will expand in two directions when heated. So, $\beta = 2\alpha $
Now, we substitute the value of the thermal expansion in the above formula as,
$\Delta A = 2\alpha A\Delta T$
Now, we rearrange the above expression as,
$ \Rightarrow \dfrac{{\Delta A}}{A} = 2\alpha \Delta T$
Now, we substitute ${10^{ - 4}}$ for $\alpha $ and $100$ for $\Delta T$ in the above equation to find the percentage increase in the area of the plate as,
$ \Rightarrow \dfrac{{\Delta A}}{A} = 2\left( {{{10}^{ - 4}}} \right)100$
After simplification we get,
$ \Rightarrow \dfrac{{\Delta A}}{A} = 0.02$
In the percentage form we get,
$\therefore \dfrac{{\Delta A}}{A} = 2\% $
$\therefore$ The percentage increases in the area of the plate is $2\% $. Hence, option (B) is correct.
Note:
When a solid material wire is heated or cooled, then the length of the wire increases or decreases which depends on the coefficient of thermal expansion of the material. The increase or decrease in the length of wire depends on the change in temperature and the coefficient of thermal expansion of the material of the wire.
Complete step by step answer:
As we know that in the Linear thermal expansion, when a solid material heated or cooled, then the change in length of solid material depends on the coefficient of thermal expansion of the material, the temperature difference, and the initial length of the object that is,
$\Delta L = \alpha L\Delta T$
Here, $\alpha $ is the thermal expansion of the solid material, $L$is the original length of the solid material, and $\Delta T$ is the change in temperature of the material.
Now we calculate the change in temperature of the copper wire when heated.
$
\Delta T = 100\;^\circ {\text{C}} - 0\;^\circ {\text{C}} \\
\Rightarrow \Delta T = 100\;^\circ {\text{C}} \\
$
So, the change in the temperature is $100\;^\circ {\text{C}}$.
Now, we substitute the value of the change in the length of the wire that is $\dfrac{{\Delta L}}{L} = \dfrac{1}{{100}}$ and the value of the change in the temperature in the thermal expansion expression to calculate the coefficient of thermal expansion of the material as,
$\Delta L = \alpha L\left( {100} \right)$
Rearrange the equation as,
\[ \Rightarrow \dfrac{{\Delta L}}{L} = \alpha 100\]
we substitute the value of the change in the length of the wire that is $\dfrac{{\Delta L}}{L} = \dfrac{1}{{100}}$ as,
\[ \Rightarrow \dfrac{1}{{100}} = \alpha 100\]
After calculation we get,
\[ \Rightarrow \alpha = {10^{ - 4}}\,{^\circ C}\]
So, the value of the coefficient of thermal expansion is \[{10^{ - 4}}\,{^\circ C}\].
In Area Thermal Expansion, when a solid material heated or cooled, then the change in the area of solid material is,
$\Delta A = \beta A\Delta T$
Here, $\beta $ is the thermal expansion of the solid material, $A$is the original area of the solid material, and $\Delta T$ is the change in temperature of the material.
As we know that the plate will expand in two directions when heated. So, $\beta = 2\alpha $
Now, we substitute the value of the thermal expansion in the above formula as,
$\Delta A = 2\alpha A\Delta T$
Now, we rearrange the above expression as,
$ \Rightarrow \dfrac{{\Delta A}}{A} = 2\alpha \Delta T$
Now, we substitute ${10^{ - 4}}$ for $\alpha $ and $100$ for $\Delta T$ in the above equation to find the percentage increase in the area of the plate as,
$ \Rightarrow \dfrac{{\Delta A}}{A} = 2\left( {{{10}^{ - 4}}} \right)100$
After simplification we get,
$ \Rightarrow \dfrac{{\Delta A}}{A} = 0.02$
In the percentage form we get,
$\therefore \dfrac{{\Delta A}}{A} = 2\% $
$\therefore$ The percentage increases in the area of the plate is $2\% $. Hence, option (B) is correct.
Note:
When a solid material wire is heated or cooled, then the length of the wire increases or decreases which depends on the coefficient of thermal expansion of the material. The increase or decrease in the length of wire depends on the change in temperature and the coefficient of thermal expansion of the material of the wire.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

