
A tension of 22N is applied to a copper wire of cross-sectional area $0.02c{m^2}$. Young’s modulus of copper $1 \cdot 1 \times {10^{11}}\dfrac{N}{{{m^2}}}$ and Poisson’s ratio is 0.32. The decrease in cross sectional area will be:
A) $1 \cdot 28 \times {10^{ - 6}}c{m^2}$.
B) $1 \cdot 6 \times {10^{ - 6}}c{m^2}$.
C) $2 \cdot 56 \times {10^{ - 6}}c{m^2}$.
D) $0 \cdot 64 \times {10^{ - 6}}c{m^2}$.
Answer
573.3k+ views
Hint:Young’s modulus is defined as the ratio of the longitudinal stress to the strain. The young’s modulus also gives the idea about the strength of any material. Poisson’s ratio is the term which comes when there is expansion of material in the perpendicular direction of the applied force and it is the ratio of the lateral strain to longitudinal strain.
Formula used:The formula used for the Young’s modulus is given by,${\text{Young's modulus}} = \dfrac{{{\text{stress}}}}{{{\text{strain}}}} = \dfrac{{\left( {\dfrac{F}{A}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$
Also the formula for the Poisson’s ratio is given by${\text{poisson's ratio}}\left( \mu \right){\text{ = }} - \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}} = - \dfrac{{{\varepsilon _{lateral}}}}{{{\varepsilon _{axial}}}}$.
Complete step by step solution:
Here it is given that the Young’s modulus is given by, $Y = \dfrac{{Fl}}{{A\Delta l}}$ and also we know that the Poisson’s ratio is $\mu = \dfrac{{\left( {\dfrac{{\Delta r}}{r}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$.
Rearranging the terms we get,
$\sigma = \dfrac{{\left( {\dfrac{{\Delta r}}{r}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$
$\dfrac{{\Delta l}}{l} = \left( {\dfrac{1}{\sigma }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)$………eq. (1)
Replace the value of equation (1) in the formula of Young’s modulus.
\[ \Rightarrow Y = \dfrac{{\left( {\dfrac{F}{A}} \right) \cdot l}}{{\Delta l}}\]
\[ \Rightarrow Y = \dfrac{\sigma }{{\left( {\dfrac{{\Delta l}}{l}} \right)}}\]
Where $\sigma $ is the stress.
Replace the value of $\dfrac{{\Delta l}}{l} = \left( {\dfrac{1}{\sigma }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)$.
\[ \Rightarrow Y = \dfrac{\sigma }{{\left( {\dfrac{{\Delta l}}{l}} \right)}}\]
\[ \Rightarrow Y = \dfrac{\sigma }{{\left[ {\left( {\dfrac{1}{\mu }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)} \right]}}\]
\[ \Rightarrow \dfrac{{\Delta r}}{r} = \dfrac{{\mu \cdot \sigma }}{Y}\]
Put the value force, Poisson’s ratio, area of cross section and Young’s modulus in the above formula.
$ \Rightarrow \dfrac{{\Delta r}}{r} = \dfrac{{\mu \cdot \sigma }}{Y}$
$ \Rightarrow \dfrac{{\Delta r}}{r} = \left[ {\dfrac{{0.32 \times \left( {\dfrac{{22}}{{0.02 \times {{10}^{ - 4}}}}} \right)}}{{1.1 \times {{10}^{11}}}}} \right]$
$ \Rightarrow \dfrac{{\Delta r}}{r} = 32 \times {10^{ - 6}}$………eq. (2)
The area of the cross section is given by $A = \pi {r^2}$ and also$\Delta A = 2\pi r\Delta r$.
Let us calculate$\dfrac{{\Delta A}}{A}$.
$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\pi r\Delta r}}{{\pi {r^2}}}$
$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\Delta r}}{r}$………eq. (3)
Put the value of $\dfrac{{\Delta r}}{r}$ from equation (2) to equation (3).
$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\Delta r}}{r}$
$ \Rightarrow \dfrac{{\Delta A}}{A} = 2 \cdot \left( {32 \times {{10}^{ - 6}}} \right)$
$ \Rightarrow \Delta A = A \cdot \left( {64 \times {{10}^{ - 6}}} \right)$
$ \Rightarrow \Delta A = 0.02 \times 64 \times {10^{ - 6}}$
$ \Rightarrow \Delta A = 1.28 \times {10^{ - 6}}c{m^2}$
So the correct answer for this problem is option A.
Note:The students should remember the formula and concept of the young’s modulus as it can help in solving such problems also should students remember the concept of the Poisson’s ratio because the problem where there is expansion of the material takes place in the perpendicular direction of the applied force the concept of Poisson’s ratio should be used.
Formula used:The formula used for the Young’s modulus is given by,${\text{Young's modulus}} = \dfrac{{{\text{stress}}}}{{{\text{strain}}}} = \dfrac{{\left( {\dfrac{F}{A}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$
Also the formula for the Poisson’s ratio is given by${\text{poisson's ratio}}\left( \mu \right){\text{ = }} - \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}} = - \dfrac{{{\varepsilon _{lateral}}}}{{{\varepsilon _{axial}}}}$.
Complete step by step solution:
Here it is given that the Young’s modulus is given by, $Y = \dfrac{{Fl}}{{A\Delta l}}$ and also we know that the Poisson’s ratio is $\mu = \dfrac{{\left( {\dfrac{{\Delta r}}{r}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$.
Rearranging the terms we get,
$\sigma = \dfrac{{\left( {\dfrac{{\Delta r}}{r}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$
$\dfrac{{\Delta l}}{l} = \left( {\dfrac{1}{\sigma }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)$………eq. (1)
Replace the value of equation (1) in the formula of Young’s modulus.
\[ \Rightarrow Y = \dfrac{{\left( {\dfrac{F}{A}} \right) \cdot l}}{{\Delta l}}\]
\[ \Rightarrow Y = \dfrac{\sigma }{{\left( {\dfrac{{\Delta l}}{l}} \right)}}\]
Where $\sigma $ is the stress.
Replace the value of $\dfrac{{\Delta l}}{l} = \left( {\dfrac{1}{\sigma }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)$.
\[ \Rightarrow Y = \dfrac{\sigma }{{\left( {\dfrac{{\Delta l}}{l}} \right)}}\]
\[ \Rightarrow Y = \dfrac{\sigma }{{\left[ {\left( {\dfrac{1}{\mu }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)} \right]}}\]
\[ \Rightarrow \dfrac{{\Delta r}}{r} = \dfrac{{\mu \cdot \sigma }}{Y}\]
Put the value force, Poisson’s ratio, area of cross section and Young’s modulus in the above formula.
$ \Rightarrow \dfrac{{\Delta r}}{r} = \dfrac{{\mu \cdot \sigma }}{Y}$
$ \Rightarrow \dfrac{{\Delta r}}{r} = \left[ {\dfrac{{0.32 \times \left( {\dfrac{{22}}{{0.02 \times {{10}^{ - 4}}}}} \right)}}{{1.1 \times {{10}^{11}}}}} \right]$
$ \Rightarrow \dfrac{{\Delta r}}{r} = 32 \times {10^{ - 6}}$………eq. (2)
The area of the cross section is given by $A = \pi {r^2}$ and also$\Delta A = 2\pi r\Delta r$.
Let us calculate$\dfrac{{\Delta A}}{A}$.
$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\pi r\Delta r}}{{\pi {r^2}}}$
$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\Delta r}}{r}$………eq. (3)
Put the value of $\dfrac{{\Delta r}}{r}$ from equation (2) to equation (3).
$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\Delta r}}{r}$
$ \Rightarrow \dfrac{{\Delta A}}{A} = 2 \cdot \left( {32 \times {{10}^{ - 6}}} \right)$
$ \Rightarrow \Delta A = A \cdot \left( {64 \times {{10}^{ - 6}}} \right)$
$ \Rightarrow \Delta A = 0.02 \times 64 \times {10^{ - 6}}$
$ \Rightarrow \Delta A = 1.28 \times {10^{ - 6}}c{m^2}$
So the correct answer for this problem is option A.
Note:The students should remember the formula and concept of the young’s modulus as it can help in solving such problems also should students remember the concept of the Poisson’s ratio because the problem where there is expansion of the material takes place in the perpendicular direction of the applied force the concept of Poisson’s ratio should be used.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

