Answer

Verified

436.8k+ views

**Hint:**Young’s modulus is defined as the ratio of the longitudinal stress to the strain. The young’s modulus also gives the idea about the strength of any material. Poisson’s ratio is the term which comes when there is expansion of material in the perpendicular direction of the applied force and it is the ratio of the lateral strain to longitudinal strain.

**Formula used:**The formula used for the Young’s modulus is given by,${\text{Young's modulus}} = \dfrac{{{\text{stress}}}}{{{\text{strain}}}} = \dfrac{{\left( {\dfrac{F}{A}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$

Also the formula for the Poisson’s ratio is given by${\text{poisson's ratio}}\left( \mu \right){\text{ = }} - \dfrac{{{\text{lateral strain}}}}{{{\text{longitudinal strain}}}} = - \dfrac{{{\varepsilon _{lateral}}}}{{{\varepsilon _{axial}}}}$.

**Complete step by step solution:**

Here it is given that the Young’s modulus is given by, $Y = \dfrac{{Fl}}{{A\Delta l}}$ and also we know that the Poisson’s ratio is $\mu = \dfrac{{\left( {\dfrac{{\Delta r}}{r}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$.

Rearranging the terms we get,

$\sigma = \dfrac{{\left( {\dfrac{{\Delta r}}{r}} \right)}}{{\left( {\dfrac{{\Delta l}}{l}} \right)}}$

$\dfrac{{\Delta l}}{l} = \left( {\dfrac{1}{\sigma }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)$………eq. (1)

Replace the value of equation (1) in the formula of Young’s modulus.

\[ \Rightarrow Y = \dfrac{{\left( {\dfrac{F}{A}} \right) \cdot l}}{{\Delta l}}\]

\[ \Rightarrow Y = \dfrac{\sigma }{{\left( {\dfrac{{\Delta l}}{l}} \right)}}\]

Where $\sigma $ is the stress.

Replace the value of $\dfrac{{\Delta l}}{l} = \left( {\dfrac{1}{\sigma }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)$.

\[ \Rightarrow Y = \dfrac{\sigma }{{\left( {\dfrac{{\Delta l}}{l}} \right)}}\]

\[ \Rightarrow Y = \dfrac{\sigma }{{\left[ {\left( {\dfrac{1}{\mu }} \right) \cdot \left( {\dfrac{{\Delta r}}{r}} \right)} \right]}}\]

\[ \Rightarrow \dfrac{{\Delta r}}{r} = \dfrac{{\mu \cdot \sigma }}{Y}\]

Put the value force, Poisson’s ratio, area of cross section and Young’s modulus in the above formula.

$ \Rightarrow \dfrac{{\Delta r}}{r} = \dfrac{{\mu \cdot \sigma }}{Y}$

$ \Rightarrow \dfrac{{\Delta r}}{r} = \left[ {\dfrac{{0.32 \times \left( {\dfrac{{22}}{{0.02 \times {{10}^{ - 4}}}}} \right)}}{{1.1 \times {{10}^{11}}}}} \right]$

$ \Rightarrow \dfrac{{\Delta r}}{r} = 32 \times {10^{ - 6}}$………eq. (2)

The area of the cross section is given by $A = \pi {r^2}$ and also$\Delta A = 2\pi r\Delta r$.

Let us calculate$\dfrac{{\Delta A}}{A}$.

$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\pi r\Delta r}}{{\pi {r^2}}}$

$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\Delta r}}{r}$………eq. (3)

Put the value of $\dfrac{{\Delta r}}{r}$ from equation (2) to equation (3).

$ \Rightarrow \dfrac{{\Delta A}}{A} = \dfrac{{2\Delta r}}{r}$

$ \Rightarrow \dfrac{{\Delta A}}{A} = 2 \cdot \left( {32 \times {{10}^{ - 6}}} \right)$

$ \Rightarrow \Delta A = A \cdot \left( {64 \times {{10}^{ - 6}}} \right)$

$ \Rightarrow \Delta A = 0.02 \times 64 \times {10^{ - 6}}$

$ \Rightarrow \Delta A = 1.28 \times {10^{ - 6}}c{m^2}$

**So the correct answer for this problem is option A.**

**Note:**The students should remember the formula and concept of the young’s modulus as it can help in solving such problems also should students remember the concept of the Poisson’s ratio because the problem where there is expansion of the material takes place in the perpendicular direction of the applied force the concept of Poisson’s ratio should be used.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

A rainbow has circular shape because A The earth is class 11 physics CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How do you graph the function fx 4x class 9 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell