
A team consists of $6$ boys and $4$ girls and the other has $5$ boys and $3$ girls. How many single matches can be arranged between the two teams where a boy plays against a boy and girl plays against a girl?
Answer
583.2k+ views
Hint:Take $1$ boy from team $1$and then start counting the no of matches he will play against the boys of team $2$. now take every boy from team $1$ and count the no of matches they will play with the boys of team $2$. Similarly, you can get the total no of matches that girls of team $1$ will play with girls of team $2$.
Complete step-by-step answer:
Let us find the total number of matches that can be arranged between two teams where a boy plays against a boy and girl plays against a girl.
For Boys -
No of boys in team $1$$ = 6$
No of boys in team $2$ $ = 5$
We have to arrange single matches. This means that every boy from team $1$ will go against every boy of team $2$ .
Hence every boy from team $1$ will play $5$ matches i.e. $1$ match with every boy from team $2$
Since there are $6$ boys in team $1$
Therefore, total no of matches boys will play $6 \times 5 = 30$
For Girls –
No of girls in team $1 = 4$
No of girls in team $2 = 3$
As we did for boys same goes for girls i.e. every girl of team $1$ will compete with every girl of team $2$
Therefore, total no of matches girls will play$ = 4 \times 3 = 12$
Total no of matches $ = $ matches of boys $ + $ matches of girls
$ = 30 + 12 = 42$
Note:In this question you just need to take care of the point that every boy of team $1$ will compete with every boy of team $2$ and every girl of team $1$ will compete with every girl of team $2$ . The chances of mistakes anyone could make is while counting the number of matches boys or girls will play . So you need to do that carefully.
Complete step-by-step answer:
Let us find the total number of matches that can be arranged between two teams where a boy plays against a boy and girl plays against a girl.
For Boys -
No of boys in team $1$$ = 6$
No of boys in team $2$ $ = 5$
We have to arrange single matches. This means that every boy from team $1$ will go against every boy of team $2$ .
Hence every boy from team $1$ will play $5$ matches i.e. $1$ match with every boy from team $2$
Since there are $6$ boys in team $1$
Therefore, total no of matches boys will play $6 \times 5 = 30$
For Girls –
No of girls in team $1 = 4$
No of girls in team $2 = 3$
As we did for boys same goes for girls i.e. every girl of team $1$ will compete with every girl of team $2$
Therefore, total no of matches girls will play$ = 4 \times 3 = 12$
Total no of matches $ = $ matches of boys $ + $ matches of girls
$ = 30 + 12 = 42$
Note:In this question you just need to take care of the point that every boy of team $1$ will compete with every boy of team $2$ and every girl of team $1$ will compete with every girl of team $2$ . The chances of mistakes anyone could make is while counting the number of matches boys or girls will play . So you need to do that carefully.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

