
A takes 6 days less than the time taken by B to finish a piece of work. If both A and B together can finish it in 4 days, find the time taken by B to finish the work.
Answer
593.4k+ views
Hint:
Consider the time taken by B as ‘x’. A takes 6 days less than B, so time taken by A is (x - 6). So work done by \[B=\dfrac{1}{x}\]and \[A=\dfrac{1}{x-6}\]. Total work done by (A + B) is \[\dfrac{1}{4}\]. Solve the equation formed to get the time taken by B to finish the work.
Complete step-by-step answer:
Suppose B alone takes x days to finish the work. Then A alone can finish the work in (x - 6) days.
Now we know A’s one day work\[=\dfrac{1}{x-6}\].
B’s work per day\[=\dfrac{1}{x}\].
The total work done by A and B in one day\[=\dfrac{1}{x}+\dfrac{1}{x-6}-(1)\]
\[A+B=\dfrac{1}{x}+\dfrac{1}{x-6}\].
It’s said that A and B can finish a work together in 4 days.
\[\therefore A+B=\dfrac{1}{4}-(2)\]
Now, Equating equation (1) and equation (2),
\[\dfrac{1}{x}+\dfrac{1}{x-6}=\dfrac{1}{4}\]
Simplifying the LHS, \[\dfrac{\left( x-6 \right)+x}{x\left( x-6 \right)}=\dfrac{1}{4}\]
\[\Rightarrow \dfrac{2x-6}{x\left( x-6 \right)}=\dfrac{1}{4}\]
Now cross multiplying them, then the equation becomes,
\[4\left( 2x-6 \right)=x\left( x-6 \right)\]
Opening the brackets and simplifying them,
\[\begin{align}
& 8x-24={{x}^{2}}-6x \\
& \Rightarrow {{x}^{2}}-6x-8x+24=0 \\
& {{x}^{2}}-x\left( 6+8 \right)+24=0 \\
& {{x}^{2}}-14x+24=0-(3) \\
\end{align}\]
Equation (3) is similar to the general quadratic equation, \[a{{x}^{2}}+bx+c=0\].
Comparing both general equation and equation (3), we get the values of constants a = 1, b = -14, c = 24.
Now, applying the above value in the quadratic formula,
\[\begin{align}
& \dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-\left( -14 \right)\pm \sqrt{{{\left( -14 \right)}^{2}}-4\times 1\times 24}}{2\times 1} \\
& =\dfrac{14\pm \sqrt{196-96}}{2}=\dfrac{14\pm \sqrt{100}}{2}=\dfrac{14\pm 10}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{14+10}{2} \right)\]and \[\left( \dfrac{14-10}{2} \right)\]= 12 and 2.
The value of x cannot be less than 6.
If B takes the time of 2 days, then the time taken by A becomes, \[x-6=2-6=-4\]days.
i.e. time taken cannot be negative.
\[\therefore x=12\].
i.e. It would take B a period of 12 days to finish the job.
Note:
If we were asked to find the time taken by A to finish the work alone then we got x=12 i.e. the time taken by B alone to do a work. So, time taken by A is 12 – 6 = 6 days. As A takes 6 days less than the time taken by B. If we are adding time taken by (A + B) together\[=\dfrac{1}{6}+\dfrac{1}{12}=\dfrac{12+6}{12\times 6}=\dfrac{1}{4}\].
Consider the time taken by B as ‘x’. A takes 6 days less than B, so time taken by A is (x - 6). So work done by \[B=\dfrac{1}{x}\]and \[A=\dfrac{1}{x-6}\]. Total work done by (A + B) is \[\dfrac{1}{4}\]. Solve the equation formed to get the time taken by B to finish the work.
Complete step-by-step answer:
Suppose B alone takes x days to finish the work. Then A alone can finish the work in (x - 6) days.
Now we know A’s one day work\[=\dfrac{1}{x-6}\].
B’s work per day\[=\dfrac{1}{x}\].
The total work done by A and B in one day\[=\dfrac{1}{x}+\dfrac{1}{x-6}-(1)\]
\[A+B=\dfrac{1}{x}+\dfrac{1}{x-6}\].
It’s said that A and B can finish a work together in 4 days.
\[\therefore A+B=\dfrac{1}{4}-(2)\]
Now, Equating equation (1) and equation (2),
\[\dfrac{1}{x}+\dfrac{1}{x-6}=\dfrac{1}{4}\]
Simplifying the LHS, \[\dfrac{\left( x-6 \right)+x}{x\left( x-6 \right)}=\dfrac{1}{4}\]
\[\Rightarrow \dfrac{2x-6}{x\left( x-6 \right)}=\dfrac{1}{4}\]
Now cross multiplying them, then the equation becomes,
\[4\left( 2x-6 \right)=x\left( x-6 \right)\]
Opening the brackets and simplifying them,
\[\begin{align}
& 8x-24={{x}^{2}}-6x \\
& \Rightarrow {{x}^{2}}-6x-8x+24=0 \\
& {{x}^{2}}-x\left( 6+8 \right)+24=0 \\
& {{x}^{2}}-14x+24=0-(3) \\
\end{align}\]
Equation (3) is similar to the general quadratic equation, \[a{{x}^{2}}+bx+c=0\].
Comparing both general equation and equation (3), we get the values of constants a = 1, b = -14, c = 24.
Now, applying the above value in the quadratic formula,
\[\begin{align}
& \dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-\left( -14 \right)\pm \sqrt{{{\left( -14 \right)}^{2}}-4\times 1\times 24}}{2\times 1} \\
& =\dfrac{14\pm \sqrt{196-96}}{2}=\dfrac{14\pm \sqrt{100}}{2}=\dfrac{14\pm 10}{2} \\
\end{align}\]
The roots are \[\left( \dfrac{14+10}{2} \right)\]and \[\left( \dfrac{14-10}{2} \right)\]= 12 and 2.
The value of x cannot be less than 6.
If B takes the time of 2 days, then the time taken by A becomes, \[x-6=2-6=-4\]days.
i.e. time taken cannot be negative.
\[\therefore x=12\].
i.e. It would take B a period of 12 days to finish the job.
Note:
If we were asked to find the time taken by A to finish the work alone then we got x=12 i.e. the time taken by B alone to do a work. So, time taken by A is 12 – 6 = 6 days. As A takes 6 days less than the time taken by B. If we are adding time taken by (A + B) together\[=\dfrac{1}{6}+\dfrac{1}{12}=\dfrac{12+6}{12\times 6}=\dfrac{1}{4}\].
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

