# A system of vectors is said to be coplanar, if

I. Their scalar triple product is zero.

II. They are linearly dependent.

Which of the following is true?

A) Only I B) Only II C) Both I and II D) None of these

Answer

Verified

201.9k+ views

**Hint:**The vectors parallel to the same plane or lie on the same plane are called coplanar vectors. The scalar triple product of a system of vectors will be zero only if they lie on the same plane.

**Complete step by step answer:**

The coplanar vectors are the vectors the lie on the same plane or are parallel to the same plane. Given, a system of vectors is said to be coplanar if their scalar triple product is zero. The scalar triple product can be written as $\left[ {\overrightarrow {{\text{a}}{\text{.}}} \overrightarrow {\text{b}} .\overrightarrow {\text{c}} } \right]$ or$\overrightarrow {{\text{a}}{\text{.}}} \left( {\overrightarrow {\text{b}} \times \overrightarrow {\text{c}} } \right)$ .Here, cross product of two vectors happens so a general vector (let us say $\overrightarrow {\text{d}} $ ) is generated and that vector has dot product with the third vector. The general vector generated ($\overrightarrow {\text{d}} $) will be perpendicular to the third vector $\overrightarrow {\text{a}} $ as the cross product of 2 vectors$\left( {\overrightarrow {\text{b}} \times \overrightarrow {\text{c}} } \right)$ give a perpendicular vector. The dot product of two vectors is zero if they are perpendicular to each other which means that $\overrightarrow {{\text{a}}{\text{.}}} \overrightarrow {\text{d}} = 0$ .So I statement is true.

Now given, a system of vectors is said to be coplanar if they are linearly dependent. If the vectors lie on the same plane then we can easily find ${\text{a,b,c}}$ and if two vectors are not parallel then the third vector can be expressed in the terms of the other two vectors. Therefore, they are linearly dependent. So II statement is also correct.

Hence

**the correct answer is ‘C’.**

**Note:**The conditions for vectors to be coplanar if there are 3 vectors, is- a) if their scalar triple product is zero, b) if they are linearly dependent and c) In case of n vectors if no more than two vectors are linearly independent.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE