Answer
Verified
409.8k+ views
Hint: You could deal with the question in two cases. Before that, recall the expression for fundamental frequency. Now by substituting the given quantities for the case of the first fork you could find the wave velocity. Then for the second fork under the condition of unaltered tension, you could substitute the same wave velocity to find the frequency.
Formula used:
Fundamental frequency,
$f=\dfrac{v}{2L}$
Complete answer:
In the question, we are given a string of length 36cm that is observed to vibrate in unison with a fork of frequency 256Hz. Now when the length was 48cm, it was found to be in unison with another fork of some frequency f. We are supposed to find the frequency of the second fork if the tension in the string was unaltered.
In order to answer this, let us recall the relation for fundamental frequency which is the lowest frequency mode known for a stretched string. This frequency is given by,
$f=\dfrac{\sqrt{\dfrac{TL}{m}}}{2L}$
Where, $\sqrt{\dfrac{TL}{m}}=v$ is the wave velocity.
$f=\dfrac{v}{2L}$
For the first case,
$v=2Lf$
$\Rightarrow v=2\times 36\times 256$
$\therefore v=18432$
As the tension is the same so will be the wave velocity.
So, for the second case,
$f=\dfrac{v}{2L}$
$\Rightarrow f=\dfrac{18432}{2\times 48}$
$\therefore f=192Hz$
Therefore, we found the frequency of the second fork to be 192Hz.
Hence, option D is found to be the answer.
Note:
From the expression for wave velocity, we see that it is dependent on the tension and mass per unit length of the string. Here, in the second case, the mass and length will obviously be the same and tension is also mentioned to be unaltered. So, we could thereby conclude that the wave velocity remains the same.
Formula used:
Fundamental frequency,
$f=\dfrac{v}{2L}$
Complete answer:
In the question, we are given a string of length 36cm that is observed to vibrate in unison with a fork of frequency 256Hz. Now when the length was 48cm, it was found to be in unison with another fork of some frequency f. We are supposed to find the frequency of the second fork if the tension in the string was unaltered.
In order to answer this, let us recall the relation for fundamental frequency which is the lowest frequency mode known for a stretched string. This frequency is given by,
$f=\dfrac{\sqrt{\dfrac{TL}{m}}}{2L}$
Where, $\sqrt{\dfrac{TL}{m}}=v$ is the wave velocity.
$f=\dfrac{v}{2L}$
For the first case,
$v=2Lf$
$\Rightarrow v=2\times 36\times 256$
$\therefore v=18432$
As the tension is the same so will be the wave velocity.
So, for the second case,
$f=\dfrac{v}{2L}$
$\Rightarrow f=\dfrac{18432}{2\times 48}$
$\therefore f=192Hz$
Therefore, we found the frequency of the second fork to be 192Hz.
Hence, option D is found to be the answer.
Note:
From the expression for wave velocity, we see that it is dependent on the tension and mass per unit length of the string. Here, in the second case, the mass and length will obviously be the same and tension is also mentioned to be unaltered. So, we could thereby conclude that the wave velocity remains the same.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths