
A string of length 36cm was in unison with a fork of frequency 256Hz. It was in unison with another fork when the vibrating length was 48cm, the tension being unaltered. The frequency of second fork is
A. 212Hz
B. 320Hz
C. 384Hz
D. 192Hz
Answer
445.8k+ views
Hint: You could deal with the question in two cases. Before that, recall the expression for fundamental frequency. Now by substituting the given quantities for the case of the first fork you could find the wave velocity. Then for the second fork under the condition of unaltered tension, you could substitute the same wave velocity to find the frequency.
Formula used:
Fundamental frequency,
$f=\dfrac{v}{2L}$
Complete answer:
In the question, we are given a string of length 36cm that is observed to vibrate in unison with a fork of frequency 256Hz. Now when the length was 48cm, it was found to be in unison with another fork of some frequency f. We are supposed to find the frequency of the second fork if the tension in the string was unaltered.
In order to answer this, let us recall the relation for fundamental frequency which is the lowest frequency mode known for a stretched string. This frequency is given by,
$f=\dfrac{\sqrt{\dfrac{TL}{m}}}{2L}$
Where, $\sqrt{\dfrac{TL}{m}}=v$ is the wave velocity.
$f=\dfrac{v}{2L}$
For the first case,
$v=2Lf$
$\Rightarrow v=2\times 36\times 256$
$\therefore v=18432$
As the tension is the same so will be the wave velocity.
So, for the second case,
$f=\dfrac{v}{2L}$
$\Rightarrow f=\dfrac{18432}{2\times 48}$
$\therefore f=192Hz$
Therefore, we found the frequency of the second fork to be 192Hz.
Hence, option D is found to be the answer.
Note:
From the expression for wave velocity, we see that it is dependent on the tension and mass per unit length of the string. Here, in the second case, the mass and length will obviously be the same and tension is also mentioned to be unaltered. So, we could thereby conclude that the wave velocity remains the same.
Formula used:
Fundamental frequency,
$f=\dfrac{v}{2L}$
Complete answer:
In the question, we are given a string of length 36cm that is observed to vibrate in unison with a fork of frequency 256Hz. Now when the length was 48cm, it was found to be in unison with another fork of some frequency f. We are supposed to find the frequency of the second fork if the tension in the string was unaltered.
In order to answer this, let us recall the relation for fundamental frequency which is the lowest frequency mode known for a stretched string. This frequency is given by,
$f=\dfrac{\sqrt{\dfrac{TL}{m}}}{2L}$
Where, $\sqrt{\dfrac{TL}{m}}=v$ is the wave velocity.
$f=\dfrac{v}{2L}$
For the first case,
$v=2Lf$
$\Rightarrow v=2\times 36\times 256$
$\therefore v=18432$
As the tension is the same so will be the wave velocity.
So, for the second case,
$f=\dfrac{v}{2L}$
$\Rightarrow f=\dfrac{18432}{2\times 48}$
$\therefore f=192Hz$
Therefore, we found the frequency of the second fork to be 192Hz.
Hence, option D is found to be the answer.
Note:
From the expression for wave velocity, we see that it is dependent on the tension and mass per unit length of the string. Here, in the second case, the mass and length will obviously be the same and tension is also mentioned to be unaltered. So, we could thereby conclude that the wave velocity remains the same.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
