
A stone falls freely under gravity. It covers distance $ {{h}_{1}} $ $ {{h}_{2}} $ and $ {{h}_{3}} $ in the first 5 seconds, the next 5 seconds and the next 5 seconds respectively. The relation between $ {{h}_{1}} $ , $ {{h}_{2}} $ and $ {{h}_{3}} $ is:
(A) $ {{h}_{1}}=2{{h}_{2}}=3{{h}_{3}} $
(B) $ {{h}_{1}}=\dfrac{{{h}_{2}}}{3}=\dfrac{{{h}_{3}}}{5} $
(C) $ {{h}_{2}}=3{{h}_{1}}\text{ }and\text{ }{{h}_{3}}=3{{h}_{2}} $
(D) $ {{h}_{1}}={{h}_{2}}={{h}_{3}} $
Answer
542.7k+ views
Hint: We can use position time relation which is given by
$ S=ut+\dfrac{1}{2}a{{t}^{2}} $
Here, S is distance travelled in time t,
u is the initial velocity,
a is the acceleration and t is time taken.
In case of free fall, if downward direction is taken positive and object is released from rest, then
$ u=0,\text{ }a=g=10m/{{s}^{2}},\text{ }S=h $
In case of free fall, if downward direction is taken negative and object is released from set, then
$ u=0,\text{ }a=-g=-10m/{{s}^{2}},\text{ }S=-h $ .
Complete step by step solution
We have, given
Stone is falling freely under gravity.
It means, if we will take downward as negative
Then, $ a=-g $
$ S=-{{h}_{1}} $
Case I: Where $ {{h}_{1}} $ is the distance covered in first seconds,
Here, stone is falling freely hence take initial velocity as zero.
$ u=0 $ , t=5s is given
Then use distance/position-time relation
$ S=ut+\dfrac{1}{2}a{{t}^{2}} $
Here, $ a=-g $ , means acceleration due to gravity.
Put all the above values:
$ {{h}_{1}}=\dfrac{25}{2}g $ ; $ -{{h}_{1}}=0\left( 5 \right)+\dfrac{1}{2}\left( -g \right){{\left( 5 \right)}^{2}} $
$ -{{h}_{1}}=-\dfrac{1}{2}\times g{{\left( 25 \right)}^{{}}} $
$ {{h}_{1}}=\dfrac{25}{2}g $ ----------(2)
Now in Case II:
Distance travelled by stone in next 5 seconds,
Now total distance covered will be, $ S=-\left( {{h}_{1}}+{{h}_{2}} \right) $ [negative sign shows just direction of measurement]
And total time taken, t=5+5=10s
Put the above values in eq, (1)
$ -\left( {{h}_{1}}+{{h}_{2}} \right)=0\left( 10 \right)+\dfrac{1}{2}\left( -g \right){{\left( 10 \right)}^{2}} $
$ \left( {{h}_{1}}+{{h}_{2}} \right)=\dfrac{1}{2}g\left( 100 \right)=\dfrac{100}{2}g $ ---------(3)
Case III:
Distance travelled by stone in next 5 seconds,
Total distance covered $ S=-\left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right) $
Total time taken $ t=5+5+5=15s $
Put the values in eq. (1)
$ -\left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)=-\dfrac{1}{2}g{{\left( 15 \right)}^{2}} $
$ \left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)=\dfrac{225}{2}g $ ------- (4)
Solve eq. (2) and (3)
$ \left( {{h}_{1}}+{{h}_{2}} \right)-{{h}_{1}}=\dfrac{100}{2}g-\dfrac{25}{2}g $
$ {{h}_{2}}=\dfrac{75}{2}g $ -------- (5)
Solve eq. (3) and (4),
$ \left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)-\left( {{h}_{1}}+{{h}_{2}} \right)=\dfrac{225}{2}g-\dfrac{100}{2}g $
$ {{h}_{3}}=\dfrac{125}{2}g $ --------- (6)
Write eq. (5) and (6) in terms of
$ {{h}_{2}}=\dfrac{25}{2}\times 3g\to {{h}_{2}}=3{{h}_{1}} $ ---------- (7)
$ {{h}_{3}}=\dfrac{25}{2}\times 5g\to {{h}_{3}}=5{{h}_{1}} $ ----------- (8)
From eq. (7) and (8),
$ {{h}_{1}}={{\dfrac{{{h}_{2}}}{3}}_{{}}}=\dfrac{{{h}_{3}}}{5} $ This is required result.
Therefore option (B) is the correct answer.
Note
We can also, use direct formula, Distance travelled in the second by,
$ {{D}_{n}}=u+\dfrac{a}{2}\left( 2n-1 \right) $
Here, n is nth second, above question n is given as 5s.
Using the above formula we will get the same answer.
$ S=ut+\dfrac{1}{2}a{{t}^{2}} $
Here, S is distance travelled in time t,
u is the initial velocity,
a is the acceleration and t is time taken.
In case of free fall, if downward direction is taken positive and object is released from rest, then
$ u=0,\text{ }a=g=10m/{{s}^{2}},\text{ }S=h $
In case of free fall, if downward direction is taken negative and object is released from set, then
$ u=0,\text{ }a=-g=-10m/{{s}^{2}},\text{ }S=-h $ .
Complete step by step solution
We have, given
Stone is falling freely under gravity.
It means, if we will take downward as negative
Then, $ a=-g $
$ S=-{{h}_{1}} $
Case I: Where $ {{h}_{1}} $ is the distance covered in first seconds,
Here, stone is falling freely hence take initial velocity as zero.
$ u=0 $ , t=5s is given
Then use distance/position-time relation
$ S=ut+\dfrac{1}{2}a{{t}^{2}} $
Here, $ a=-g $ , means acceleration due to gravity.
Put all the above values:
$ {{h}_{1}}=\dfrac{25}{2}g $ ; $ -{{h}_{1}}=0\left( 5 \right)+\dfrac{1}{2}\left( -g \right){{\left( 5 \right)}^{2}} $
$ -{{h}_{1}}=-\dfrac{1}{2}\times g{{\left( 25 \right)}^{{}}} $
$ {{h}_{1}}=\dfrac{25}{2}g $ ----------(2)
Now in Case II:
Distance travelled by stone in next 5 seconds,
Now total distance covered will be, $ S=-\left( {{h}_{1}}+{{h}_{2}} \right) $ [negative sign shows just direction of measurement]
And total time taken, t=5+5=10s
Put the above values in eq, (1)
$ -\left( {{h}_{1}}+{{h}_{2}} \right)=0\left( 10 \right)+\dfrac{1}{2}\left( -g \right){{\left( 10 \right)}^{2}} $
$ \left( {{h}_{1}}+{{h}_{2}} \right)=\dfrac{1}{2}g\left( 100 \right)=\dfrac{100}{2}g $ ---------(3)
Case III:
Distance travelled by stone in next 5 seconds,
Total distance covered $ S=-\left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right) $
Total time taken $ t=5+5+5=15s $
Put the values in eq. (1)
$ -\left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)=-\dfrac{1}{2}g{{\left( 15 \right)}^{2}} $
$ \left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)=\dfrac{225}{2}g $ ------- (4)
Solve eq. (2) and (3)
$ \left( {{h}_{1}}+{{h}_{2}} \right)-{{h}_{1}}=\dfrac{100}{2}g-\dfrac{25}{2}g $
$ {{h}_{2}}=\dfrac{75}{2}g $ -------- (5)
Solve eq. (3) and (4),
$ \left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)-\left( {{h}_{1}}+{{h}_{2}} \right)=\dfrac{225}{2}g-\dfrac{100}{2}g $
$ {{h}_{3}}=\dfrac{125}{2}g $ --------- (6)
Write eq. (5) and (6) in terms of
$ {{h}_{2}}=\dfrac{25}{2}\times 3g\to {{h}_{2}}=3{{h}_{1}} $ ---------- (7)
$ {{h}_{3}}=\dfrac{25}{2}\times 5g\to {{h}_{3}}=5{{h}_{1}} $ ----------- (8)
From eq. (7) and (8),
$ {{h}_{1}}={{\dfrac{{{h}_{2}}}{3}}_{{}}}=\dfrac{{{h}_{3}}}{5} $ This is required result.
Therefore option (B) is the correct answer.
Note
We can also, use direct formula, Distance travelled in the second by,
$ {{D}_{n}}=u+\dfrac{a}{2}\left( 2n-1 \right) $
Here, n is nth second, above question n is given as 5s.
Using the above formula we will get the same answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

