
A stone falls freely under gravity. It covers distance $ {{h}_{1}} $ $ {{h}_{2}} $ and $ {{h}_{3}} $ in the first 5 seconds, the next 5 seconds and the next 5 seconds respectively. The relation between $ {{h}_{1}} $ , $ {{h}_{2}} $ and $ {{h}_{3}} $ is:
(A) $ {{h}_{1}}=2{{h}_{2}}=3{{h}_{3}} $
(B) $ {{h}_{1}}=\dfrac{{{h}_{2}}}{3}=\dfrac{{{h}_{3}}}{5} $
(C) $ {{h}_{2}}=3{{h}_{1}}\text{ }and\text{ }{{h}_{3}}=3{{h}_{2}} $
(D) $ {{h}_{1}}={{h}_{2}}={{h}_{3}} $
Answer
543.3k+ views
Hint: We can use position time relation which is given by
$ S=ut+\dfrac{1}{2}a{{t}^{2}} $
Here, S is distance travelled in time t,
u is the initial velocity,
a is the acceleration and t is time taken.
In case of free fall, if downward direction is taken positive and object is released from rest, then
$ u=0,\text{ }a=g=10m/{{s}^{2}},\text{ }S=h $
In case of free fall, if downward direction is taken negative and object is released from set, then
$ u=0,\text{ }a=-g=-10m/{{s}^{2}},\text{ }S=-h $ .
Complete step by step solution
We have, given
Stone is falling freely under gravity.
It means, if we will take downward as negative
Then, $ a=-g $
$ S=-{{h}_{1}} $
Case I: Where $ {{h}_{1}} $ is the distance covered in first seconds,
Here, stone is falling freely hence take initial velocity as zero.
$ u=0 $ , t=5s is given
Then use distance/position-time relation
$ S=ut+\dfrac{1}{2}a{{t}^{2}} $
Here, $ a=-g $ , means acceleration due to gravity.
Put all the above values:
$ {{h}_{1}}=\dfrac{25}{2}g $ ; $ -{{h}_{1}}=0\left( 5 \right)+\dfrac{1}{2}\left( -g \right){{\left( 5 \right)}^{2}} $
$ -{{h}_{1}}=-\dfrac{1}{2}\times g{{\left( 25 \right)}^{{}}} $
$ {{h}_{1}}=\dfrac{25}{2}g $ ----------(2)
Now in Case II:
Distance travelled by stone in next 5 seconds,
Now total distance covered will be, $ S=-\left( {{h}_{1}}+{{h}_{2}} \right) $ [negative sign shows just direction of measurement]
And total time taken, t=5+5=10s
Put the above values in eq, (1)
$ -\left( {{h}_{1}}+{{h}_{2}} \right)=0\left( 10 \right)+\dfrac{1}{2}\left( -g \right){{\left( 10 \right)}^{2}} $
$ \left( {{h}_{1}}+{{h}_{2}} \right)=\dfrac{1}{2}g\left( 100 \right)=\dfrac{100}{2}g $ ---------(3)
Case III:
Distance travelled by stone in next 5 seconds,
Total distance covered $ S=-\left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right) $
Total time taken $ t=5+5+5=15s $
Put the values in eq. (1)
$ -\left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)=-\dfrac{1}{2}g{{\left( 15 \right)}^{2}} $
$ \left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)=\dfrac{225}{2}g $ ------- (4)
Solve eq. (2) and (3)
$ \left( {{h}_{1}}+{{h}_{2}} \right)-{{h}_{1}}=\dfrac{100}{2}g-\dfrac{25}{2}g $
$ {{h}_{2}}=\dfrac{75}{2}g $ -------- (5)
Solve eq. (3) and (4),
$ \left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)-\left( {{h}_{1}}+{{h}_{2}} \right)=\dfrac{225}{2}g-\dfrac{100}{2}g $
$ {{h}_{3}}=\dfrac{125}{2}g $ --------- (6)
Write eq. (5) and (6) in terms of
$ {{h}_{2}}=\dfrac{25}{2}\times 3g\to {{h}_{2}}=3{{h}_{1}} $ ---------- (7)
$ {{h}_{3}}=\dfrac{25}{2}\times 5g\to {{h}_{3}}=5{{h}_{1}} $ ----------- (8)
From eq. (7) and (8),
$ {{h}_{1}}={{\dfrac{{{h}_{2}}}{3}}_{{}}}=\dfrac{{{h}_{3}}}{5} $ This is required result.
Therefore option (B) is the correct answer.
Note
We can also, use direct formula, Distance travelled in the second by,
$ {{D}_{n}}=u+\dfrac{a}{2}\left( 2n-1 \right) $
Here, n is nth second, above question n is given as 5s.
Using the above formula we will get the same answer.
$ S=ut+\dfrac{1}{2}a{{t}^{2}} $
Here, S is distance travelled in time t,
u is the initial velocity,
a is the acceleration and t is time taken.
In case of free fall, if downward direction is taken positive and object is released from rest, then
$ u=0,\text{ }a=g=10m/{{s}^{2}},\text{ }S=h $
In case of free fall, if downward direction is taken negative and object is released from set, then
$ u=0,\text{ }a=-g=-10m/{{s}^{2}},\text{ }S=-h $ .
Complete step by step solution
We have, given
Stone is falling freely under gravity.
It means, if we will take downward as negative
Then, $ a=-g $
$ S=-{{h}_{1}} $
Case I: Where $ {{h}_{1}} $ is the distance covered in first seconds,
Here, stone is falling freely hence take initial velocity as zero.
$ u=0 $ , t=5s is given
Then use distance/position-time relation
$ S=ut+\dfrac{1}{2}a{{t}^{2}} $
Here, $ a=-g $ , means acceleration due to gravity.
Put all the above values:
$ {{h}_{1}}=\dfrac{25}{2}g $ ; $ -{{h}_{1}}=0\left( 5 \right)+\dfrac{1}{2}\left( -g \right){{\left( 5 \right)}^{2}} $
$ -{{h}_{1}}=-\dfrac{1}{2}\times g{{\left( 25 \right)}^{{}}} $
$ {{h}_{1}}=\dfrac{25}{2}g $ ----------(2)
Now in Case II:
Distance travelled by stone in next 5 seconds,
Now total distance covered will be, $ S=-\left( {{h}_{1}}+{{h}_{2}} \right) $ [negative sign shows just direction of measurement]
And total time taken, t=5+5=10s
Put the above values in eq, (1)
$ -\left( {{h}_{1}}+{{h}_{2}} \right)=0\left( 10 \right)+\dfrac{1}{2}\left( -g \right){{\left( 10 \right)}^{2}} $
$ \left( {{h}_{1}}+{{h}_{2}} \right)=\dfrac{1}{2}g\left( 100 \right)=\dfrac{100}{2}g $ ---------(3)
Case III:
Distance travelled by stone in next 5 seconds,
Total distance covered $ S=-\left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right) $
Total time taken $ t=5+5+5=15s $
Put the values in eq. (1)
$ -\left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)=-\dfrac{1}{2}g{{\left( 15 \right)}^{2}} $
$ \left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)=\dfrac{225}{2}g $ ------- (4)
Solve eq. (2) and (3)
$ \left( {{h}_{1}}+{{h}_{2}} \right)-{{h}_{1}}=\dfrac{100}{2}g-\dfrac{25}{2}g $
$ {{h}_{2}}=\dfrac{75}{2}g $ -------- (5)
Solve eq. (3) and (4),
$ \left( {{h}_{1}}+{{h}_{2}}+{{h}_{3}} \right)-\left( {{h}_{1}}+{{h}_{2}} \right)=\dfrac{225}{2}g-\dfrac{100}{2}g $
$ {{h}_{3}}=\dfrac{125}{2}g $ --------- (6)
Write eq. (5) and (6) in terms of
$ {{h}_{2}}=\dfrac{25}{2}\times 3g\to {{h}_{2}}=3{{h}_{1}} $ ---------- (7)
$ {{h}_{3}}=\dfrac{25}{2}\times 5g\to {{h}_{3}}=5{{h}_{1}} $ ----------- (8)
From eq. (7) and (8),
$ {{h}_{1}}={{\dfrac{{{h}_{2}}}{3}}_{{}}}=\dfrac{{{h}_{3}}}{5} $ This is required result.
Therefore option (B) is the correct answer.
Note
We can also, use direct formula, Distance travelled in the second by,
$ {{D}_{n}}=u+\dfrac{a}{2}\left( 2n-1 \right) $
Here, n is nth second, above question n is given as 5s.
Using the above formula we will get the same answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

